The goal of this theory is to define complex numbers and prove that the Metamath complex numbers axioms hold.
This section consists mostly of definitions and a proof context for talking about complex numbers. Suppose we have a set \(R\) with binary operations \(A\) and \(M\) and a relation \(r\) such that the quadruple \((R,A,M,r)\) forms a complete ordered field. The next definitions take \((R,A,M,r)\) and construct the sets that represent the structure of complex numbers: the carrier (\(\mathbb{C}=R\times R\)), binary operations of addition and multiplication of complex numbers and the order relation on \(\mathbb{R}=R\times 0\). The \( ImCxAdd, ReCxAdd, ImCxMul, ReCxMul \) are helper meta-functions representing the imaginary part of a sum of complex numbers, the real part of a sum of real numbers, the imaginary part of a product of complex numbers and the real part of a product of real numbers, respectively. The actual operations (subsets of \((R\times R)\times R\) are named CplxAdd and CplxMul. When \(R\) is an ordered field, it comes with an order relation. This induces a natural strict order relation on \(\{\langle x,0\rangle : x\in R\}\subseteq R\times R\). We call the set \(\{\langle x,0\rangle : x\in R\}\) \( \text{ComplexReals}(R,A) \) and the strict order relation \( \text{CplxROrder}(R,A,r) \). The order on the real axis of complex numbers is defined as the relation induced on it by the canonical projection on the first coordinate and the order we have on the real numbers. OK, lets repeat this slower. We start with the order relation \(r\) on a (model of) real numbers \(R\). We want to define an order relation on a subset of complex numbers, namely on \(R\times \{0\}\). To do that we use the notion of a relation induced by a mapping. The mapping here is \(f:R\times \{0\}\rightarrow R, f\langle x,0 \rangle = x\) which is defined under a name of SliceProjection in func_ZF.thy. This defines a relation \(r_1\) (called \( \text{InducedRelation}(f,r) \), see func_ZF) on \(R\times \{0\}\) such that \( \langle \langle x, 0\rangle, \langle y,0\rangle \in r_1\) iff \(\langle x,y\rangle \in r\). This way we get what we call \( \text{CplxROrder}(R,A,r) \). However, this is not the end of the story, because Metamath uses strict inequalities in its axioms, rather than weak ones like IsarMathLib (mostly). So we need to take the strict version of this order relation. This is done in the syntax definition of \( \lt _{\mathbb{R}} \) in the definition of complex0 context. Since Metamath proves a lot of theorems about the real numbers extended with \(+\infty\) and \(-\infty\), we define the notation for inequalites on the extended real line as well.
A helper expression representing the real part of the sum of two complex numbers.
definition
\( \text{ReCxAdd}(R,A,a,b) \equiv A\langle \text{fst}(a),\text{fst}(b)\rangle \)
An expression representing the imaginary part of the sum of two complex numbers.
definition
\( \text{ImCxAdd}(R,A,a,b) \equiv A\langle \text{snd}(a),\text{snd}(b)\rangle \)
The set (function) that is the binary operation that adds complex numbers.
definition
\( \text{CplxAdd}(R,A) \equiv \) \( \{\langle p, \langle \text{ReCxAdd}(R,A,\text{fst}(p),\text{snd}(p)), \text{ImCxAdd}(R,A,\text{fst}(p),\text{snd}(p)) \rangle \rangle .\ \) \( p\in (R\times R)\times (R\times R)\} \)
The expression representing the imaginary part of the product of complex numbers.
definition
\( \text{ImCxMul}(R,A,M,a,b) \equiv A\langle M\langle \text{fst}(a),\text{snd}(b)\rangle , M\langle \text{snd}(a),\text{fst}(b)\rangle \rangle \)
The expression representing the real part of the product of complex numbers.
definition
\( \text{ReCxMul}(R,A,M,a,b) \equiv \) \( A\langle M\langle \text{fst}(a),\text{fst}(b)\rangle , \text{GroupInv}(R,A)(M\langle \text{snd}(a),\text{snd}(b)\rangle )\rangle \)
The function (set) that represents the binary operation of multiplication of complex numbers.
definition
\( \text{CplxMul}(R,A,M) \equiv \) \( \{ \langle p, \langle \text{ReCxMul}(R,A,M,\text{fst}(p),\text{snd}(p)), \text{ImCxMul}(R,A,M,\text{fst}(p),\text{snd}(p))\rangle \rangle .\ \) \( p \in (R\times R)\times (R\times R)\} \)
The definition real numbers embedded in the complex plane.
definition
\( \text{ComplexReals}(R,A) \equiv R\times \{\text{ TheNeutralElement}(R,A)\} \)
Definition of order relation on the real line.
definition
\( \text{CplxROrder}(R,A,r) \equiv \) \( \text{InducedRelation}( \text{SliceProjection}( \text{ComplexReals}(R,A)),r) \)
The next locale defines proof context and notation that will be used for complex numbers.
locale complex0
assumes R_are_reals: \( \text{IsAmodelOfReals}(R,A,M,r) \)
defines \( \mathbb{C} \equiv R\times R \)
defines \( 1 _R \equiv \text{ TheNeutralElement}(R,M) \)
defines \( 0 _R \equiv \text{ TheNeutralElement}(R,A) \)
defines \( 1 \equiv \langle 1 _R, 0 _R\rangle \)
defines \( 0 \equiv \langle 0 _R, 0 _R\rangle \)
defines \( \imath \equiv \langle 0 _R,1 _R\rangle \)
defines \( \mathbb{R} \equiv \{\langle r, 0 _R\rangle .\ r\in R\} \)
defines \( a \cdot b \equiv M\langle a,b\rangle \)
defines \( a + b \equiv A\langle a,b\rangle \)
defines \( - a \equiv \text{GroupInv}(R,A)(a) \)
defines \( a + b \equiv \text{CplxAdd}(R,A)\langle a,b\rangle \)
defines \( a \cdot b \equiv \text{CplxMul}(R,A,M)\langle a,b\rangle \)
defines \( a / b \equiv \bigcup \{ x \in \mathbb{C} .\ b \cdot x = a \} \)
defines \( a - b \equiv \bigcup \{ x \in \mathbb{C} .\ b + x = a \} \)
defines \( - a \equiv 0 - a \)
defines \( a \lt _{\mathbb{R}} b \equiv \langle a,b\rangle \in \text{StrictVersion}( \text{CplxROrder}(R,A,r)) \)
defines \( +\infty \equiv \mathbb{C} \)
defines \( -\infty \equiv \{\mathbb{C} \} \)
defines \( \mathbb{R} ^* \equiv \mathbb{R} \cup \{+\infty ,-\infty \} \)
defines \( \mathbb{N} \equiv \bigcap \{N \in Pow(\mathbb{R} ).\ 1 \in N \wedge (\forall n.\ n\in N \longrightarrow n + 1 \in N)\} \)
defines \( \lt \equiv \text{StrictVersion}( \text{CplxROrder}(R,A,r)) \cap \mathbb{R} \times \mathbb{R} \cup \) \( \{\langle -\infty ,+\infty \rangle \} \cup (\mathbb{R} \times \{+\infty \}) \cup (\{-\infty \}\times \mathbb{R} ) \)
defines \( a \lt b \equiv \langle a,b\rangle \in \lt \)
defines \( a \leq b \equiv \neg (b \lt a) \)
defines \( 2 \equiv 1 + 1 \)
defines \( 3 \equiv 2 + 1 \)
defines \( 4 \equiv 3 + 1 \)
defines \( 5 \equiv 4 + 1 \)
defines \( 6 \equiv 5 + 1 \)
defines \( 7 \equiv 6 + 1 \)
defines \( 8 \equiv 7 + 1 \)
defines \( 9 \equiv 8 + 1 \)
In this section we will prove that all Metamath's axioms of complex numbers hold in the complex0 context.
The next lemma lists some contexts that are valid in the complex0 context.
lemma (in complex0) valid_cntxts:
shows \( field1(R,A,M,r) \), \( field0(R,A,M) \), \( ring1(R,A,M,r) \), \( group3(R,A,r) \), \( ring0(R,A,M) \), \( M \text{ is commutative on } R \), \( group0(R,A) \)proofThe next lemma shows the definition of real and imaginary part of complex sum and product in a more readable form using notation defined in complex0 locale.
lemma (in complex0) cplx_mul_add_defs:
shows \( \text{ReCxAdd}(R,A,\langle a,b\rangle ,\langle c,d\rangle ) = a + c \), \( \text{ImCxAdd}(R,A,\langle a,b\rangle ,\langle c,d\rangle ) = b + d \), \( \text{ImCxMul}(R,A,M,\langle a,b\rangle ,\langle c,d\rangle ) = a\cdot d + b\cdot c \), \( \text{ReCxMul}(R,A,M,\langle a,b\rangle ,\langle c,d\rangle ) = a\cdot c + ( - b\cdot d) \)proofReal and imaginary parts of sums and products of complex numbers are real.
lemma (in complex0) cplx_mul_add_types:
assumes A1: \( z_1 \in \mathbb{C} \), \( z_2 \in \mathbb{C} \)
shows \( \text{ReCxAdd}(R,A,z_1,z_2) \in R \), \( \text{ImCxAdd}(R,A,z_1,z_2) \in R \), \( \text{ImCxMul}(R,A,M,z_1,z_2) \in R \), \( \text{ReCxMul}(R,A,M,z_1,z_2) \in R \)proofComplex reals are complex. Recall the definition of \( \mathbb{R} \) in the complex0 locale.
lemma (in complex0) axresscn:
shows \( \mathbb{R} \subseteq \mathbb{C} \) using valid_cntxts, group0_2_L2Complex \(1\) is not complex \(0\).
lemma (in complex0) ax1ne0:
shows \( 1 \neq 0 \)proofComplex addition is a complex valued binary operation on complex numbers.
lemma (in complex0) axaddopr:
shows \( \text{CplxAdd}(R,A): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \)proofComplex multiplication is a complex valued binary operation on complex numbers.
lemma (in complex0) axmulopr:
shows \( \text{CplxMul}(R,A,M): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C} \)proofWhat are the values of omplex addition and multiplication in terms of their real and imaginary parts?
lemma (in complex0) cplx_mul_add_vals:
assumes A1: \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \)
shows \( \langle a,b\rangle + \langle c,d\rangle = \langle a + c, b + d\rangle \), \( \langle a,b\rangle \cdot \langle c,d\rangle = \langle a\cdot c + ( - b\cdot d), a\cdot d + b\cdot c\rangle \)proofComplex multiplication is commutative.
lemma (in complex0) axmulcom:
assumes A1: \( a \in \mathbb{C} \), \( b \in \mathbb{C} \)
shows \( a\cdot b = b\cdot a \) using assms, cplx_mul_add_vals, valid_cntxts, Ring_ZF_1_L4, field_mult_commA sum of complex numbers is complex.
lemma (in complex0) axaddcl:
assumes \( a \in \mathbb{C} \), \( b \in \mathbb{C} \)
shows \( a + b \in \mathbb{C} \) using assms, axaddopr, apply_funtypeA product of complex numbers is complex.
lemma (in complex0) axmulcl:
assumes \( a \in \mathbb{C} \), \( b \in \mathbb{C} \)
shows \( a\cdot b \in \mathbb{C} \) using assms, axmulopr, apply_funtypeMultiplication is distributive with respect to addition.
lemma (in complex0) axdistr:
assumes A1: \( a \in \mathbb{C} \), \( b \in \mathbb{C} \), \( c \in \mathbb{C} \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \)proofComplex addition is commutative.
lemma (in complex0) axaddcom:
assumes \( a \in \mathbb{C} \), \( b \in \mathbb{C} \)
shows \( a + b = b + a \) using assms, cplx_mul_add_vals, valid_cntxts, Ring_ZF_1_L4Complex addition is associative.
lemma (in complex0) axaddass:
assumes A1: \( a \in \mathbb{C} \), \( b \in \mathbb{C} \), \( c \in \mathbb{C} \)
shows \( a + b + c = a + (b + c) \)proofComplex multiplication is associative.
lemma (in complex0) axmulass:
assumes A1: \( a \in \mathbb{C} \), \( b \in \mathbb{C} \), \( c \in \mathbb{C} \)
shows \( a \cdot b \cdot c = a \cdot (b \cdot c) \)proofComplex \(1\) is real. This really means that the pair \(\langle 1,0 \rangle\) is on the real axis.
lemma (in complex0) ax1re:
shows \( 1 \in \mathbb{R} \) using valid_cntxts, Ring_ZF_1_L2The imaginary unit is a "square root" of \(-1\) (that is, \(i^2 +1 =0\)).
lemma (in complex0) axi2m1:
shows \( \imath \cdot \imath + 1 = 0 \) using valid_cntxts, Ring_ZF_1_L2, Ring_ZF_1_L3, cplx_mul_add_vals, Ring_ZF_1_L6, group0_2_L6\(0\) is the neutral element of complex addition.
lemma (in complex0) ax0id:
assumes \( a \in \mathbb{C} \)
shows \( a + 0 = a \) using assms, cplx_mul_add_vals, valid_cntxts, Ring_ZF_1_L2, Ring_ZF_1_L3The imaginary unit is a complex number.
lemma (in complex0) axicn:
shows \( \imath \in \mathbb{C} \) using valid_cntxts, Ring_ZF_1_L2All complex numbers have additive inverses.
lemma (in complex0) axnegex:
assumes A1: \( a \in \mathbb{C} \)
shows \( \exists x\in \mathbb{C} .\ a + x = 0 \)proofA non-zero complex number has a multiplicative inverse.
lemma (in complex0) axrecex:
assumes A1: \( a \in \mathbb{C} \) and A2: \( a\neq 0 \)
shows \( \exists x\in \mathbb{C} .\ a\cdot x = 1 \)proofComplex \(1\) is a right neutral element for multiplication.
lemma (in complex0) ax1id:
assumes A1: \( a \in \mathbb{C} \)
shows \( a\cdot 1 = a \) using assms, valid_cntxts, Ring_ZF_1_L2, cplx_mul_add_vals, Ring_ZF_1_L3, Ring_ZF_1_L6A formula for sum of (complex) real numbers.
lemma (in complex0) sum_of_reals:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a + b = \langle \text{fst}(a) + \text{fst}(b), 0 _R\rangle \) using assms, valid_cntxts, Ring_ZF_1_L2, cplx_mul_add_vals, Ring_ZF_1_L3The sum of real numbers is real.
lemma (in complex0) axaddrcl:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a + b \in \mathbb{R} \) using assms, sum_of_reals, valid_cntxts, Ring_ZF_1_L4The formula for the product of (complex) real numbers.
lemma (in complex0) prod_of_reals:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a \cdot b = \langle \text{fst}(a)\cdot \text{fst}(b), 0 _R\rangle \)proofThe product of (complex) real numbers is real.
lemma (in complex0) axmulrcl:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a \cdot b \in \mathbb{R} \) using assms, prod_of_reals, valid_cntxts, Ring_ZF_1_L4The existence of a real negative of a real number.
lemma (in complex0) axrnegex:
assumes A1: \( a\in \mathbb{R} \)
shows \( \exists x \in \mathbb{R} .\ a + x = 0 \)proofEach nonzero real number has a real inverse
lemma (in complex0) axrrecex:
assumes A1: \( a \in \mathbb{R} \), \( a \neq 0 \)
shows \( \exists x\in \mathbb{R} .\ a \cdot x = 1 \)proofOur \( \mathbb{R} \) symbol is the real axis on the complex plane.
lemma (in complex0) real_means_real_axis:
shows \( \mathbb{R} = \text{ComplexReals}(R,A) \) using ComplexReals_defThe CplxROrder thing is a relation on the complex reals.
lemma (in complex0) cplx_ord_on_cplx_reals:
shows \( \text{CplxROrder}(R,A,r) \subseteq \mathbb{R} \times \mathbb{R} \) using ComplexReals_def, slice_proj_bij, real_means_real_axis, CplxROrder_def, InducedRelation_defThe strict version of the complex relation is a relation on complex reals.
lemma (in complex0) cplx_strict_ord_on_cplx_reals:
shows \( \text{StrictVersion}( \text{CplxROrder}(R,A,r)) \subseteq \mathbb{R} \times \mathbb{R} \) using cplx_ord_on_cplx_reals, strict_ver_relThe CplxROrder thing is a relation on the complex reals. Here this is formulated as a statement that in complex0 context \(a
lemma (in complex0) strict_cplx_ord_type:
assumes \( a \lt _{\mathbb{R}} b \)
shows \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) using assms, CplxROrder_def, def_of_strict_ver, InducedRelation_def, slice_proj_bij, ComplexReals_def, real_means_real_axisA more readable version of the definition of the strict order relation on the real axis. Recall that in the complex0 context \(r\) denotes the (non-strict) order relation on the underlying model of real numbers.
lemma (in complex0) def_of_real_axis_order:
shows \( \langle x, 0 _R\rangle \lt _{\mathbb{R}} \langle y, 0 _R\rangle \longleftrightarrow \langle x,y\rangle \in r \wedge x\neq y \)proofThe (non strict) order on complex reals is antisymmetric, transitive and total.
lemma (in complex0) cplx_ord_antsym_trans_tot:
shows \( \text{antisym}( \text{CplxROrder}(R,A,r)) \), \( \text{trans}( \text{CplxROrder}(R,A,r)) \), \( \text{CplxROrder}(R,A,r) \text{ is total on } \mathbb{R} \)proofThe trichotomy law for the strict order on the complex reals.
lemma (in complex0) cplx_strict_ord_trich:
assumes \( a \in \mathbb{R} \), \( b \in \mathbb{R} \)
shows \( \text{Exactly_1_of_3_holds} (a \lt _{\mathbb{R}} b, a=b, b \lt _{\mathbb{R}} a) \) using assms, cplx_ord_antsym_trans_tot, strict_ans_tot_trichThe strict order on the complex reals is kind of antisymetric.
lemma (in complex0) pre_axlttri:
assumes A1: \( a \in \mathbb{R} \), \( b \in \mathbb{R} \)
shows \( a \lt _{\mathbb{R}} b \longleftrightarrow \neg (a=b \vee b \lt _{\mathbb{R}} a) \)proofThe strict order on complex reals is transitive.
lemma (in complex0) cplx_strict_ord_trans:
shows \( \text{trans}( \text{StrictVersion}( \text{CplxROrder}(R,A,r))) \) using cplx_ord_antsym_trans_tot, strict_of_transBThe strict order on complex reals is transitive - the explicit version of cplx_strict_ord_trans.
lemma (in complex0) pre_axlttrn:
assumes A1: \( a \lt _{\mathbb{R}} b \), \( b \lt _{\mathbb{R}} c \)
shows \( a \lt _{\mathbb{R}} c \)proofThe strict order on complex reals is preserved by translations.
lemma (in complex0) pre_axltadd:
assumes A1: \( a \lt _{\mathbb{R}} b \) and A2: \( c \in \mathbb{R} \)
shows \( c + a \lt _{\mathbb{R}} c + b \)proofThe set of positive complex reals is closed with respect to multiplication.
lemma (in complex0) pre_axmulgt0:
assumes A1: \( 0 \lt _{\mathbb{R}} a \), \( 0 \lt _{\mathbb{R}} b \)
shows \( 0 \lt _{\mathbb{R}} a\cdot b \)proofThe order on complex reals is linear and complete.
lemma (in complex0) cmplx_reals_ord_lin_compl:
shows \( \text{CplxROrder}(R,A,r) \text{ is complete } \), \( \text{IsLinOrder}(\mathbb{R} , \text{CplxROrder}(R,A,r)) \)proofThe property of the strict order on complex reals that corresponds to completeness.
lemma (in complex0) pre_axsup:
assumes A1: \( X \subseteq \mathbb{R} \), \( X \neq 0 \) and A2: \( \exists x\in \mathbb{R} .\ \forall y\in X.\ y \lt _{\mathbb{R}} x \)
shows \( \exists x\in \mathbb{R} .\ (\forall y\in X.\ \neg (x \lt _{\mathbb{R}} y)) \wedge (\forall y\in \mathbb{R} .\ (y \lt _{\mathbb{R}} x \longrightarrow (\exists z\in X.\ y \lt _{\mathbb{R}} z))) \)proofassumes \( \text{IsAnOrdField}(K,A,M,r) \)
shows \( field1(K,A,M,r) \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( z_1 \in \mathbb{C} \), \( z_2 \in \mathbb{C} \)
shows \( \text{ReCxAdd}(R,A,z_1,z_2) \in R \), \( \text{ImCxAdd}(R,A,z_1,z_2) \in R \), \( \text{ImCxMul}(R,A,M,z_1,z_2) \in R \), \( \text{ReCxMul}(R,A,M,z_1,z_2) \in R \)assumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y \)assumes \( f:X\rightarrow Y \), \( x\in X \) and \( f = \{\langle x,b(x)\rangle .\ x\in X\} \)
shows \( f(x) = b(x) \) and \( b(x)\in Y \)assumes \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \)
shows \( \langle a,b\rangle + \langle c,d\rangle = \langle a + c, b + d\rangle \), \( \langle a,b\rangle \cdot \langle c,d\rangle = \langle a\cdot c + ( - b\cdot d), a\cdot d + b\cdot c\rangle \)assumes \( a\in K \), \( b\in K \)
shows \( a\cdot b = b\cdot a \)assumes \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \), \( e\in R \), \( f\in R \)
shows \( a\cdot (c\cdot e - d\cdot f) - b\cdot (c\cdot f + d\cdot e) =\) \( (a\cdot c - b\cdot d)\cdot e - (a\cdot d + b\cdot c)\cdot f \), \( a\cdot (c\cdot f + d\cdot e) + b\cdot (c\cdot e - d\cdot f) =\) \( (a\cdot c - b\cdot d)\cdot f + (a\cdot d + b\cdot c)\cdot e \), \( a\cdot (c + e) - b\cdot (d + f) = a\cdot c - b\cdot d + (a\cdot e - b\cdot f) \), \( a\cdot (d + f) + b\cdot (c + e) = a\cdot d + b\cdot c + (a\cdot f + b\cdot e) \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( a\in R \), \( b\in R \) and \( a \neq 0 \vee b \neq 0 \)
shows \( 0 \lt a^2 + b^2 \) and \( \exists c\in R.\ (a^2 + b^2)\cdot c = 1 \)assumes \( M \text{ is commutative on } R \) and \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (a\cdot c) - b\cdot ( - b\cdot c) = (a\cdot a + b\cdot b)\cdot c \), \( a\cdot ( - b\cdot c) + b\cdot (a\cdot c) = 0 \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a + b = \langle \text{fst}(a) + \text{fst}(b), 0 _R\rangle \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a \cdot b = \langle \text{fst}(a)\cdot \text{fst}(b), 0 _R\rangle \)assumes \( a\in K \), \( a\neq 0 \)
shows \( a^{-1} \in K_0 \), \( (a^{-1})^2 \in K_0 \), \( a^{-1} \in K \), \( a^{-1} \neq 0 \)assumes \( a\in K \), \( a\neq 0 \)
shows \( a\cdot a^{-1} = 1 \), \( a^{-1}\cdot a = 1 \)assumes \( r \subseteq A\times A \)
shows \( \text{StrictVersion}(r) \subseteq A\times A \)assumes \( \langle x,y\rangle \in \text{InducedRelation}(f,R) \)
shows \( \langle f(x),f(y)\rangle \in R \)assumes \( a \lt _{\mathbb{R}} b \)
shows \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)assumes \( a\leq b \)
shows \( a\in R \), \( b\in R \)assumes \( f:A\rightarrow B \) and \( x\in A \), \( y\in A \) and \( \langle f(x),f(y)\rangle \in R \)
shows \( \langle x,y\rangle \in \text{InducedRelation}(f,R) \)assumes \( f \in \text{bij}(A,B) \)
shows \( f \in ord\_iso(A, \text{InducedRelation}(f,R),B,R) \)assumes \( f \in ord\_iso(A,r,B,R) \) and \( r \subseteq A\times A \) and \( \text{antisym}(R) \)
shows \( \text{antisym}(r) \)assumes \( f \in ord\_iso(A,r,B,R) \) and \( r \subseteq A\times A \) and \( R \text{ is total on } B \)
shows \( r \text{ is total on } A \)assumes \( f \in ord\_iso(A,r,B,R) \) and \( r \subseteq A\times A \) and \( \text{trans}(R) \)
shows \( \text{trans}(r) \)assumes \( \text{antisym}(r) \) and \( r \text{ is total on } X \) and \( a\in X \), \( b\in X \) and \( s = \text{StrictVersion}(r) \)
shows \( \text{Exactly_1_of_3_holds} (\langle a,b\rangle \in s, a=b,\langle b,a\rangle \in s) \)assumes \( a \in \mathbb{R} \), \( b \in \mathbb{R} \)
shows \( \text{Exactly_1_of_3_holds} (a \lt _{\mathbb{R}} b, a=b, b \lt _{\mathbb{R}} a) \)assumes \( \text{Exactly_1_of_3_holds} (p,q,r) \)
shows \( p \longleftrightarrow \neg (q \vee r) \)assumes \( \text{trans}(r) \) and \( \text{antisym}(r) \)
shows \( \text{trans}( \text{StrictVersion}(r)) \)assumes \( \text{trans}(r) \) and \( \langle a,b\rangle \in r \wedge \langle b,c\rangle \in r \)
shows \( \langle a,c\rangle \in r \)assumes \( a \lt b \) and \( c\in G \)
shows \( a\cdot c \lt b\cdot c \) and \( c\cdot a \lt c\cdot b \)assumes \( 0 \lt a \), \( 0 \lt b \)
shows \( 0 \lt a\cdot b \)assumes \( f \in \text{bij}(A,B) \) and \( R \subseteq B\times B \) and \( R \text{ is complete } \)
shows \( \text{InducedRelation}(f,R) \text{ is complete } \)assumes \( f \in \text{bij}(A,B) \) and \( \text{IsLinOrder}(B,R) \)
shows \( \text{IsLinOrder}(A, \text{InducedRelation}(f,R)) \)assumes \( r \subseteq X\times X \) and \( \text{IsLinOrder}(X,r) \) and \( r \text{ is complete } \) and \( A\subseteq X \), \( A\neq 0 \) and \( s = \text{StrictVersion}(r) \) and \( \exists u\in X.\ \forall y\in A.\ \langle y,u\rangle \in s \)
shows \( \exists x\in X.\ ( \forall y\in A.\ \langle x,y\rangle \notin s ) \wedge (\forall y\in X.\ \langle y,x\rangle \in s \longrightarrow (\exists z\in A.\ \langle y,z\rangle \in s)) \)