In this theory we continue the OrderedGroup_ZF theory development.
The goal of this section is to prove the triangle inequality for ordered groups.
Absolute value maps \(G\) into \(G\).
lemma (in group3) OrderedGroup_ZF_3_L1:
shows \( \text{AbsoluteValue}(G,P,r) : G\rightarrow G \)proofIf \(a\in G^+\), then \(|a| = a\).
lemma (in group3) OrderedGroup_ZF_3_L2:
assumes A1: \( a\in G^+ \)
shows \( \vert a\vert = a \)proofThe absolute value of the unit is the unit. In the additive totation that would be \(|0| = 0\).
lemma (in group3) OrderedGroup_ZF_3_L2A:
shows \( \vert 1 \vert = 1 \) using OrderedGroup_ZF_1_L3A, OrderedGroup_ZF_3_L2If \(a\) is positive, then \(|a| = a\).
lemma (in group3) OrderedGroup_ZF_3_L2B:
assumes \( a\in G_+ \)
shows \( \vert a\vert = a \) using assms, PositiveSet_def, Nonnegative_def, OrderedGroup_ZF_3_L2If \(a\in G\setminus G^+\), then \(|a| = a^{-1}\).
lemma (in group3) OrderedGroup_ZF_3_L3:
assumes A1: \( a \in G-G^+ \)
shows \( \vert a\vert = a^{-1} \)proofFor elements that not greater than the unit, the absolute value is the inverse.
lemma (in group3) OrderedGroup_ZF_3_L3A:
assumes A1: \( a\leq 1 \)
shows \( \vert a\vert = a^{-1} \)proofIn linearly ordered groups the absolute value of any element is in \(G^+\).
lemma (in group3) OrderedGroup_ZF_3_L3B:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \)
shows \( \vert a\vert \in G^+ \)proofFor linearly ordered groups (where the order is total), the absolute value maps the group into the positive set.
lemma (in group3) OrderedGroup_ZF_3_L3C:
assumes A1: \( r \text{ is total on } G \)
shows \( \text{AbsoluteValue}(G,P,r) : G\rightarrow G^+ \)proofIf the absolute value is the unit, then the elemnent is the unit.
lemma (in group3) OrderedGroup_ZF_3_L3D:
assumes A1: \( a\in G \) and A2: \( \vert a\vert = 1 \)
shows \( a = 1 \)proofIn linearly ordered groups the unit is not greater than the absolute value of any element.
lemma (in group3) OrderedGroup_ZF_3_L3E:
assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( 1 \leq \vert a\vert \) using assms, OrderedGroup_ZF_3_L3B, OrderedGroup_ZF_1_L2If \(b\) is greater than both \(a\) and \(a^{-1}\), then \(b\) is greater than \(|a|\).
lemma (in group3) OrderedGroup_ZF_3_L4:
assumes A1: \( a\leq b \) and A2: \( a^{-1}\leq b \)
shows \( \vert a\vert \leq b \)proofIn linearly ordered groups \(a\leq |a|\).
lemma (in group3) OrderedGroup_ZF_3_L5:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \)
shows \( a \leq \vert a\vert \)proof\(a^{-1}\leq |a|\) (in additive notation it would be \(-a\leq |a|\).
lemma (in group3) OrderedGroup_ZF_3_L6:
assumes A1: \( a\in G \)
shows \( a^{-1} \leq \vert a\vert \)proofSome inequalities about the product of two elements of a linearly ordered group and its absolute value.
lemma (in group3) OrderedGroup_ZF_3_L6A:
assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b \leq \vert a\vert \cdot \vert b\vert \), \( a\cdot b^{-1} \leq \vert a\vert \cdot \vert b\vert \), \( a^{-1}\cdot b \leq \vert a\vert \cdot \vert b\vert \), \( a^{-1}\cdot b^{-1} \leq \vert a\vert \cdot \vert b\vert \) using assms, OrderedGroup_ZF_3_L5, OrderedGroup_ZF_3_L6, OrderedGroup_ZF_1_L5B\(|a^{-1}|\leq |a|\).
lemma (in group3) OrderedGroup_ZF_3_L7:
assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a^{-1}\vert \leq \vert a\vert \) using assms, OrderedGroup_ZF_3_L5, OrderedGroup_ZF_1_L1, group_inv_of_inv, OrderedGroup_ZF_3_L6, OrderedGroup_ZF_3_L4\(|a^{-1}| = |a|\).
lemma (in group3) OrderedGroup_ZF_3_L7A:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \)
shows \( \vert a^{-1}\vert = \vert a\vert \)proof\(|a\cdot b^{-1}| = |b\cdot a^{-1}|\). It doesn't look so strange in the additive notation: \(|a-b| = |b-a|\).
lemma (in group3) OrderedGroup_ZF_3_L7B:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b^{-1}\vert = \vert b\cdot a^{-1}\vert \)proofTriangle inequality for linearly ordered abelian groups. It would be nice to drop commutativity or give an example that shows we can't do that.
theorem (in group3) OrdGroup_triangle_ineq:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( r \text{ is total on } G \) and A3: \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b\vert \leq \vert a\vert \cdot \vert b\vert \)proofWe can multiply the sides of an inequality with absolute value.
lemma (in group3) OrderedGroup_ZF_3_L7C:
assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \), \( a\in G \), \( b\in G \) and \( \vert a\vert \leq c \), \( \vert b\vert \leq d \)
shows \( \vert a\cdot b\vert \leq c\cdot d \)proofA version of the OrderedGroup_ZF_3_L7C but with multiplying by the inverse.
lemma (in group3) OrderedGroup_ZF_3_L7CA:
assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \vert a\vert \leq c \), \( \vert b\vert \leq d \)
shows \( \vert a\cdot b^{-1}\vert \leq c\cdot d \) using assms, OrderedGroup_ZF_1_L1, inverse_in_group, OrderedGroup_ZF_3_L7A, OrderedGroup_ZF_3_L7CTriangle inequality with three integers.
lemma (in group3) OrdGroup_triangle_ineq3:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( r \text{ is total on } G \) and A3: \( a\in G \), \( b\in G \), \( c\in G \)
shows \( \vert a\cdot b\cdot c\vert \leq \vert a\vert \cdot \vert b\vert \cdot \vert c\vert \)proofSome variants of the triangle inequality.
lemma (in group3) OrderedGroup_ZF_3_L7D:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( r \text{ is total on } G \) and A3: \( a\in G \), \( b\in G \) and A4: \( \vert a\cdot b^{-1}\vert \leq c \)
shows \( \vert a\vert \leq c\cdot \vert b\vert \), \( \vert a\vert \leq \vert b\vert \cdot c \), \( c^{-1}\cdot a \leq b \), \( a\cdot c^{-1} \leq b \), \( a \leq b\cdot c \)proofSome more variants of the triangle inequality.
lemma (in group3) OrderedGroup_ZF_3_L7E:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( r \text{ is total on } G \) and A3: \( a\in G \), \( b\in G \) and A4: \( \vert a\cdot b^{-1}\vert \leq c \)
shows \( b\cdot c^{-1} \leq a \)proofAn application of the triangle inequality with four group elements.
lemma (in group3) OrderedGroup_ZF_3_L7F:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( r \text{ is total on } G \) and A3: \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( \vert a\cdot c^{-1}\vert \leq \vert a\cdot b\vert \cdot \vert c\cdot d\vert \cdot \vert b\cdot d^{-1}\vert \)proof\(|a|\leq L\) implies \(L^{-1} \leq a\) (it would be \(-L \leq a\) in the additive notation).
lemma (in group3) OrderedGroup_ZF_3_L8:
assumes A1: \( a\in G \) and A2: \( \vert a\vert \leq L \)
shows \( L^{-1}\leq a \)proofIn linearly ordered groups \(|a|\leq L\) implies \(a \leq L\) (it would be \(a \leq L\) in the additive notation).
lemma (in group3) OrderedGroup_ZF_3_L8A:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \) and A3: \( \vert a\vert \leq L \)
shows \( a\leq L \), \( 1 \leq L \)proofA somewhat generalized version of the above lemma.
lemma (in group3) OrderedGroup_ZF_3_L8B:
assumes A1: \( a\in G \) and A2: \( \vert a\vert \leq L \) and A3: \( 1 \leq c \)
shows \( (L\cdot c)^{-1} \leq a \)proofIf \(b\) is between \(a\) and \(a\cdot c\), then \(b\cdot a^{-1}\leq c\).
lemma (in group3) OrderedGroup_ZF_3_L8C:
assumes A1: \( a\leq b \) and A2: \( c\in G \) and A3: \( b\leq c\cdot a \)
shows \( \vert b\cdot a^{-1}\vert \leq c \)proofFor linearly ordered groups if the absolute values of elements in a set are bounded, then the set is bounded.
lemma (in group3) OrderedGroup_ZF_3_L9:
assumes A1: \( r \text{ is total on } G \) and A2: \( A\subseteq G \) and A3: \( \forall a\in A.\ \vert a\vert \leq L \)
shows \( \text{IsBounded}(A,r) \)proofA slightly more general version of the previous lemma, stating the same fact for a set defined by separation.
lemma (in group3) OrderedGroup_ZF_3_L9A:
assumes A1: \( r \text{ is total on } G \) and A2: \( \forall x\in X.\ b(x)\in G \wedge \vert b(x)\vert \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)proofA special form of the previous lemma stating a similar fact for an image of a set by a function with values in a linearly ordered group.
lemma (in group3) OrderedGroup_ZF_3_L9B:
assumes A1: \( r \text{ is total on } G \) and A2: \( f:X\rightarrow G \) and A3: \( A\subseteq X \) and A4: \( \forall x\in A.\ \vert f(x)\vert \leq L \)
shows \( \text{IsBounded}(f(A),r) \)proofFor linearly ordered groups if \(l\leq a\leq u\) then \(|a|\) is smaller than the greater of \(|l|,|u|\).
lemma (in group3) OrderedGroup_ZF_3_L10:
assumes A1: \( r \text{ is total on } G \) and A2: \( l\leq a \), \( a\leq u \)
shows \( \vert a\vert \leq \text{GreaterOf}(r,\vert l\vert ,\vert u\vert ) \)proofFor linearly ordered groups if a set is bounded then the absolute values are bounded.
lemma (in group3) OrderedGroup_ZF_3_L10A:
assumes A1: \( r \text{ is total on } G \) and A2: \( \text{IsBounded}(A,r) \)
shows \( \exists L.\ \forall a\in A.\ \vert a\vert \leq L \)proofA slightly more general version of the previous lemma, stating the same fact for a set defined by separation.
lemma (in group3) OrderedGroup_ZF_3_L11:
assumes \( r \text{ is total on } G \) and \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)
shows \( \exists L.\ \forall x\in X.\ \vert b(x)\vert \leq L \) using assms, OrderedGroup_ZF_3_L10AAbsolute values of elements of a finite image of a nonempty set are bounded by an element of the group.
lemma (in group3) OrderedGroup_ZF_3_L11A:
assumes A1: \( r \text{ is total on } G \) and A2: \( X\neq 0 \) and A3: \( \{b(x).\ x\in X\} \in Fin(G) \)
shows \( \exists L\in G.\ \forall x\in X.\ \vert b(x)\vert \leq L \)proofIn totally ordered groups the absolute value of a nonunit element is in \( G_+ \).
lemma (in group3) OrderedGroup_ZF_3_L12:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \) and A3: \( a\neq 1 \)
shows \( \vert a\vert \in G_+ \)proofQuite often when considering inequalities we prefer to talk about the absolute values instead of raw elements of a set. This section formalizes some material that is useful for that.
If a set has a maximum and minimum, then the greater of the absolute value of the maximum and minimum belongs to the image of the set by the absolute value function.
lemma (in group3) OrderedGroup_ZF_4_L1:
assumes \( A \subseteq G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and \( M = \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \)
shows \( M \in \text{AbsoluteValue}(G,P,r)(A) \) using ordGroupAssum, assms, IsAnOrdGroup_def, IsPartOrder_def, Order_ZF_4_L3, Order_ZF_4_L4, OrderedGroup_ZF_3_L1, func_imagedef, GreaterOf_defIf a set has a maximum and minimum, then the greater of the absolute value of the maximum and minimum bounds absolute values of all elements of the set.
lemma (in group3) OrderedGroup_ZF_4_L2:
assumes A1: \( r \text{ is total on } G \) and A2: \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and A3: \( a\in A \)
shows \( \vert a\vert \leq \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \)proofIf a set has a maximum and minimum, then the greater of the absolute value of the maximum and minimum bounds absolute values of all elements of the set. In this lemma the absolute values of ekements of a set are represented as the elements of the image of the set by the absolute value function.
lemma (in group3) OrderedGroup_ZF_4_L3:
assumes \( r \text{ is total on } G \) and \( A \subseteq G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and \( b \in \text{AbsoluteValue}(G,P,r)(A) \)
shows \( b\leq \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \) using assms, OrderedGroup_ZF_3_L1, func_imagedef, OrderedGroup_ZF_4_L2If a set has a maximum and minimum, then the set of absolute values also has a maximum.
lemma (in group3) OrderedGroup_ZF_4_L4:
assumes A1: \( r \text{ is total on } G \) and A2: \( A \subseteq G \) and A3: \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAmaximum}(r, \text{AbsoluteValue}(G,P,r)(A)) \)proofIf a set has a maximum and a minimum, then all absolute values are bounded by the maximum of the set of absolute values.
lemma (in group3) OrderedGroup_ZF_4_L5:
assumes A1: \( r \text{ is total on } G \) and A2: \( A \subseteq G \) and A3: \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and A4: \( a\in A \)
shows \( \vert a\vert \leq \text{Maximum}(r, \text{AbsoluteValue}(G,P,r)(A)) \)proofSometimes it is usful to define the order by prescibing the set of positive or nonnegative elements. This section deals with two such definitions. One takes a subset \(H\) of \(G\) that is closed under the group operation, \(1\notin H\) and for every \(a\in H\) we have either \(a\in H\) or \(a^{-1}\in H\). Then the order is defined as \(a\leq b\) iff \(a=b\) or \(a^{-1}b \in H\). For abelian groups this makes a linearly ordered group. We will refer to order defined this way in the comments as the order defined by a positive set. The context used in this section is the group0 context defined in Group_ZF theory. Recall that f in that context denotes the group operation (unlike in the previous sections where the group operation was denoted P.
The order defined by a positive set is the same as the order defined by a nonnegative set.
lemma (in group0) OrderedGroup_ZF_5_L1:
assumes A1: \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \langle a,b\rangle \in r \longleftrightarrow a\in G \wedge b\in G \wedge a^{-1}\cdot b \in H \cup \{1 \} \)proofThe relation defined by a positive set is antisymmetric.
lemma (in group0) OrderedGroup_ZF_5_L2:
assumes A1: \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and A2: \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \)
shows \( \text{antisym}(r) \)proofThe relation defined by a positive set is transitive.
lemma (in group0) OrderedGroup_ZF_5_L3:
assumes A1: \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and A2: \( H\subseteq G \), \( H \text{ is closed under } P \)
shows \( \text{trans}(r) \)proofThe relation defined by a positive set is translation invariant. With our definition this step requires the group to be abelian.
lemma (in group0) OrderedGroup_ZF_5_L4:
assumes A1: \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and A2: \( P \text{ is commutative on } G \) and A3: \( \langle a,b\rangle \in r \) and A4: \( c\in G \)
shows \( \langle a\cdot c,b\cdot c\rangle \in r \wedge \langle c\cdot a,c\cdot b\rangle \in r \)proofIf \(H\subseteq G\) is closed under the group operation \(1\notin H\) and for every \(a\in H\) we have either \(a\in H\) or \(a^{-1}\in H\), then the relation "\(\leq\)" defined by \(a\leq b \Leftrightarrow a^{-1}b \in H\) orders the group \(G\). In such order \(H\) may be the set of positive or nonnegative elements.
lemma (in group0) OrderedGroup_ZF_5_L5:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( H\subseteq G \), \( H \text{ is closed under } P \) and A3: \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \) and A4: \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \text{IsAnOrdGroup}(G,P,r) \), \( r \text{ is total on } G \), \( \text{Nonnegative}(G,P,r) = \text{PositiveSet}(G,P,r) \cup \{1 \} \)proofIf the set defined as in OrderedGroup_ZF_5_L4 does not contain the neutral element, then it is the positive set for the resulting order.
lemma (in group0) OrderedGroup_ZF_5_L6:
assumes \( P \text{ is commutative on } G \) and \( H\subseteq G \) and \( 1 \notin H \) and \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \text{PositiveSet}(G,P,r) = H \) using assms, group_inv_of_one, group0_2_L2, PositiveSet_defThe next definition describes how we construct an order relation from the prescribed set of positive elements.
definition
\( \text{OrderFromPosSet}(G,P,H) \equiv \) \( \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee P\langle \text{GroupInv}(G,P)(\text{fst}(p)),\text{snd}(p)\rangle \in H \} \)
The next theorem rephrases lemmas OrderedGroup_ZF_5_L5 and OrderedGroup_ZF_5_L6 using the definition of the order from the positive set OrderFromPosSet. To summarize, this is what it says: Suppose that \(H\subseteq G\) is a set closed under that group operation such that \(1\notin H\) and for every nonunit group element \(a\) either \(a\in H\) or \(a^{-1}\in H\). Define the order as \(a\leq b\) iff \(a=b\) or \(a^{-1}\cdot b \in H\). Then this order makes \(G\) into a linearly ordered group such \(H\) is the set of positive elements (and then of course \(H \cup \{1\}\) is the set of nonnegative elements).
theorem (in group0) Group_ord_by_positive_set:
assumes \( P \text{ is commutative on } G \) and \( H\subseteq G \), \( H \text{ is closed under } P \), \( 1 \notin H \) and \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \)
shows \( \text{IsAnOrdGroup}(G,P, \text{OrderFromPosSet}(G,P,H)) \), \( \text{OrderFromPosSet}(G,P,H) \text{ is total on } G \), \( \text{PositiveSet}(G,P, \text{OrderFromPosSet}(G,P,H)) = H \), \( \text{Nonnegative}(G,P, \text{OrderFromPosSet}(G,P,H)) = H \cup \{1 \} \) using assms, OrderFromPosSet_def, OrderedGroup_ZF_5_L5, OrderedGroup_ZF_5_L6In this section we verify properties of odd extensions of functions defined on \(G_+\). An odd extension of a function \(f: G_+ \rightarrow G\) is a function \(f^\circ : G\rightarrow G\) defined by \(f^\circ (x) = f(x)\) if \(x\in G_+\), \(f(1) = 1\) and \(f^\circ (x) = (f(x^{-1}))^{-1}\) for \(x < 1\). Such function is the unique odd function that is equal to \(f\) when restricted to \(G_+\).
The next lemma is just to see the definition of the odd extension in the notation used in the group1 context.
lemma (in group3) OrderedGroup_ZF_6_L1:
shows \( f^\circ = f \cup \{\langle a, (f(a^{-1}))^{-1}\rangle .\ a \in -G_+\} \cup \{\langle 1 ,1 \rangle \} \) using OddExtension_defA technical lemma that states that from a function defined on \( G_+ \) with values in \(G\) we have \((f(a^{-1}))^{-1}\in G\).
lemma (in group3) OrderedGroup_ZF_6_L2:
assumes \( f: G_+\rightarrow G \) and \( a\in -G_+ \)
shows \( f(a^{-1}) \in G \), \( (f(a^{-1}))^{-1} \in G \) using assms, OrderedGroup_ZF_1_L27, apply_funtype, OrderedGroup_ZF_1_L1, inverse_in_groupThe main theorem about odd extensions. It basically says that the odd extension of a function is what we want to to be.
lemma (in group3) odd_ext_props:
assumes A1: \( r \text{ is total on } G \) and A2: \( f: G_+\rightarrow G \)
shows \( f^\circ : G \rightarrow G \), \( \forall a\in G_+.\ (f^\circ )(a) = f(a) \), \( \forall a\in (-G_+).\ (f^\circ )(a) = (f(a^{-1}))^{-1} \), \( (f^\circ )(1 ) = 1 \)proofOdd extensions are odd, of course.
lemma (in group3) oddext_is_odd:
assumes A1: \( r \text{ is total on } G \) and A2: \( f: G_+\rightarrow G \) and A3: \( a\in G \)
shows \( (f^\circ )(a^{-1}) = ((f^\circ )(a))^{-1} \)proofAnother way of saying that odd extensions are odd.
lemma (in group3) oddext_is_odd_alt:
assumes A1: \( r \text{ is total on } G \) and A2: \( f: G_+\rightarrow G \) and A3: \( a\in G \)
shows \( ((f^\circ )(a^{-1}))^{-1} = (f^\circ )(a) \)proofIn this section we consider functions \(f: G\rightarrow G\) with the property that for \(f(x)\) is arbitrarily large for large enough \(x\). More precisely, for every \(a\in G\) there exist \(b\in G_+\) such that for every \(x\geq b\) we have \(f(x)\geq a\). In a sense this means that \(\lim_{x\rightarrow \infty}f(x) = \infty\), hence the title of this section. We also prove dual statements for functions such that \(\lim_{x\rightarrow -\infty}f(x) = -\infty\).
If an image of a set by a function with infinite positive limit is bounded above, then the set itself is bounded above.
lemma (in group3) OrderedGroup_ZF_7_L1:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( f:G\rightarrow G \) and A4: \( \forall a\in G.\ \exists b\in G_+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and A5: \( A\subseteq G \) and A6: \( \text{IsBoundedAbove}(f(A),r) \)
shows \( \text{IsBoundedAbove}(A,r) \)proofIf an image of a set defined by separation by a function with infinite positive limit is bounded above, then the set itself is bounded above.
lemma (in group3) OrderedGroup_ZF_7_L2:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( X\neq 0 \) and A4: \( f:G\rightarrow G \) and A5: \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow a \leq f(y) \) and A6: \( \forall x\in X.\ b(x) \in G \wedge f(b(x)) \leq U \)
shows \( \exists u.\ \forall x\in X.\ b(x) \leq u \)proofIf the image of a set defined by separation by a function with infinite negative limit is bounded below, then the set itself is bounded above. This is dual to OrderedGroup_ZF_7_L2.
lemma (in group3) OrderedGroup_ZF_7_L3:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( X\neq 0 \) and A4: \( f:G\rightarrow G \) and A5: \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow f(y^{-1}) \leq a \) and A6: \( \forall x\in X.\ b(x) \in G \wedge L \leq f(b(x)) \)
shows \( \exists l.\ \forall x\in X.\ l \leq b(x) \)proofThe next lemma combines OrderedGroup_ZF_7_L2 and OrderedGroup_ZF_7_L3 to show that if an image of a set defined by separation by a function with infinite limits is bounded, then the set itself i bounded.
lemma (in group3) OrderedGroup_ZF_7_L4:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( X\neq 0 \) and A4: \( f:G\rightarrow G \) and A5: \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow a \leq f(y) \) and A6: \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow f(y^{-1}) \leq a \) and A7: \( \forall x\in X.\ b(x) \in G \wedge L \leq f(b(x)) \wedge f(b(x)) \leq U \)
shows \( \exists M.\ \forall x\in X.\ \vert b(x)\vert \leq M \)proofassumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f:A\rightarrow C \)
shows \( domain(f) = A \)assumes \( a\in G^+ \)
shows \( \vert a\vert = a \)assumes \( a\leq 1 \) and \( a\neq 1 \)
shows \( a \in G-G^+ \)assumes \( a \in G-G^+ \)
shows \( \vert a\vert = a^{-1} \)assumes \( r \text{ is total on } G \) and \( a\in G-G^+ \)
shows \( a\leq 1 \), \( a^{-1} \in G^+ \), \( \text{restrict}( \text{GroupInv}(G,P),G-G^+)(a) \in G^+ \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a\vert \in G^+ \)assumes \( f:X\rightarrow Y \) and \( \forall x\in X.\ f(x) \in Z \)
shows \( f:X\rightarrow Z \)assumes \( a\in G \) and \( a^{-1} = 1 \)
shows \( a = 1 \)assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \)assumes \( g\in G \)
shows \( g\leq g \)assumes \( r \text{ is total on } G \) and \( a\in G^+ \) and \( b \in G-G^+ \)
shows \( b\leq a \)assumes \( a\leq b \)
shows \( b^{-1}\leq a^{-1} \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( a \leq \vert a\vert \)assumes \( a\in G \)
shows \( a^{-1} \leq \vert a\vert \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)assumes \( a\in G \)
shows \( a = (a^{-1})^{-1} \)assumes \( a\leq b \) and \( a^{-1}\leq b \)
shows \( \vert a\vert \leq b \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a^{-1}\vert \leq \vert a\vert \)assumes \( a\leq b \), \( b\leq a \)
shows \( a=b \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a^{-1}\vert = \vert a\vert \)assumes \( a\in G \), \( b\in G \)
shows \( (a\cdot b^{-1})^{-1} = b\cdot a^{-1} \), \( (a^{-1}\cdot b)^{-1} = b^{-1}\cdot a \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b\vert \leq \vert a\vert \cdot \vert b\vert \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \), \( a\in G \), \( b\in G \) and \( \vert a\vert \leq c \), \( \vert b\vert \leq d \)
shows \( \vert a\cdot b\vert \leq c\cdot d \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( c\in G \) and \( a\leq b\cdot c \) and \( b\leq b_1 \)
shows \( a\leq b_1\cdot c \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} \leq c \)
shows \( a \leq c\cdot b \), \( c^{-1}\cdot a \leq b \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \vert a\cdot b^{-1}\vert \leq c \)
shows \( \vert a\vert \leq c\cdot \vert b\vert \), \( \vert a\vert \leq \vert b\vert \cdot c \), \( c^{-1}\cdot a \leq b \), \( a\cdot c^{-1} \leq b \), \( a \leq b\cdot c \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( \vert a\cdot b\cdot c\vert \leq \vert a\vert \cdot \vert b\vert \cdot \vert c\vert \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot (b\cdot c)^{-1} = (a\cdot d^{-1}\cdot c^{-1})\cdot (d\cdot b^{-1}) \), \( a\cdot b\cdot (c\cdot d) = c\cdot a\cdot (b\cdot d) \), \( a\cdot b\cdot (c\cdot d) = a\cdot c\cdot (b\cdot d) \), \( a\cdot (b\cdot c^{-1})\cdot d = a\cdot b\cdot d\cdot c^{-1} \), \( (a\cdot b)\cdot (c\cdot d)^{-1}\cdot (b\cdot d^{-1})^{-1} = a\cdot c^{-1} \)assumes \( a\in G \) and \( \vert a\vert \leq L \)
shows \( L^{-1}\leq a \)assumes \( 1 \leq a \)
shows \( a^{-1}\leq 1 \) and \( \neg (a\leq 1 \wedge a\neq 1 ) \)assumes \( a\in G \), \( b\in G \) and \( c\leq a\cdot b \)
shows \( c\cdot b^{-1} \leq a \), \( a^{-1}\cdot c \leq b \)assumes \( a\in G \), \( b\in G \)
shows \( a\leq b \longleftrightarrow a\cdot b^{-1} \leq 1 \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( \vert a\vert \leq L \)
shows \( a\leq L \), \( 1 \leq L \)assumes \( r \text{ is total on } G \) and \( A\subseteq G \) and \( \forall a\in A.\ \vert a\vert \leq L \)
shows \( \text{IsBounded}(A,r) \)assumes \( r \text{ is total on } G \) and \( \forall x\in X.\ b(x)\in G \wedge \vert b(x)\vert \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( r \text{ is total on } X \) and \( x\in X \), \( y\in X \)
shows \( \langle x, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle y, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),x\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),y\rangle \in r \)assumes \( a\in G-G^+ \) and \( b\leq a \)
shows \( b\in G-G^+ \)assumes \( r \text{ is total on } G \) and \( l\leq a \), \( a\leq u \)
shows \( \vert a\vert \leq \text{GreaterOf}(r,\vert l\vert ,\vert u\vert ) \)assumes \( r \text{ is total on } G \) and \( \text{IsBounded}(A,r) \)
shows \( \exists L.\ \forall a\in A.\ \vert a\vert \leq L \)assumes \( r \text{ is total on } G \) and \( B\in Fin(G) \)
shows \( \text{IsBounded}(B,r) \)assumes \( r \text{ is total on } G \) and \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)
shows \( \exists L.\ \forall x\in X.\ \vert b(x)\vert \leq L \)assumes \( a\in G \) and \( \vert a\vert = 1 \)
shows \( a = 1 \)assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{Maximum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \)
shows \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( r \text{ is total on } G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and \( a\in A \)
shows \( \vert a\vert \leq \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \)assumes \( A \subseteq G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and \( M = \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \)
shows \( M \in \text{AbsoluteValue}(G,P,r)(A) \)assumes \( r \text{ is total on } G \) and \( A \subseteq G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \) and \( b \in \text{AbsoluteValue}(G,P,r)(A) \)
shows \( b\leq \text{GreaterOf}(r,\vert \text{Minimum}(r,A)\vert ,\vert \text{Maximum}(r,A)\vert ) \)assumes \( r \text{ is total on } G \) and \( A \subseteq G \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAmaximum}(r, \text{AbsoluteValue}(G,P,r)(A)) \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( a\in G \), \( b\in G \) and \( a^{-1}\cdot b = 1 \)
shows \( a=b \)assumes \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \langle a,b\rangle \in r \longleftrightarrow a\in G \wedge b\in G \wedge a^{-1}\cdot b \in H \cup \{1 \} \)assumes \( H\subseteq G \) and \( H \text{ is closed under } P \)
shows \( (H \cup \{1 \}) \text{ is closed under } P \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot c^{-1}= (a\cdot b^{-1})\cdot (b\cdot c^{-1}) \), \( a^{-1}\cdot c = (a^{-1}\cdot b)\cdot (b^{-1}\cdot c) \), \( a\cdot (b\cdot c)^{-1} = a\cdot c^{-1}\cdot b^{-1} \), \( a\cdot (b\cdot c^{-1}) = a\cdot b\cdot c^{-1} \), \( (a\cdot b^{-1}\cdot c^{-1})^{-1} = c\cdot b\cdot a^{-1} \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot b^{-1}) = a \), \( a\cdot (b\cdot c)\cdot c^{-1} = a\cdot b \)assumes \( \forall x y z.\ \langle x, y\rangle \in r \wedge \langle y, z\rangle \in r \longrightarrow \langle x, z\rangle \in r \)
shows \( \text{trans}(r) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b^{-1}\cdot (a\cdot c^{-1})^{-1} = c\cdot b^{-1} \), \( (a\cdot c)^{-1}\cdot (b\cdot c) = a^{-1}\cdot b \), \( a\cdot (b\cdot (c\cdot a^{-1}\cdot b^{-1})) = c \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot a^{-1}) = b \)assumes \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \)
shows \( \text{antisym}(r) \)assumes \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and \( H\subseteq G \), \( H \text{ is closed under } P \)
shows \( \text{trans}(r) \)assumes \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \) and \( P \text{ is commutative on } G \) and \( \langle a,b\rangle \in r \) and \( c\in G \)
shows \( \langle a\cdot c,b\cdot c\rangle \in r \wedge \langle c\cdot a,c\cdot b\rangle \in r \)assumes \( P \text{ is commutative on } G \) and \( H\subseteq G \), \( H \text{ is closed under } P \) and \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \) and \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \text{IsAnOrdGroup}(G,P,r) \), \( r \text{ is total on } G \), \( \text{Nonnegative}(G,P,r) = \text{PositiveSet}(G,P,r) \cup \{1 \} \)assumes \( P \text{ is commutative on } G \) and \( H\subseteq G \) and \( 1 \notin H \) and \( r = \{p \in G\times G.\ \text{fst}(p) = \text{snd}(p) \vee \text{fst}(p)^{-1}\cdot \text{snd}(p) \in H\} \)
shows \( \text{PositiveSet}(G,P,r) = H \)assumes \( a \in (-G_+) \)
shows \( a^{-1} \in G_+ \)assumes \( f: G_+\rightarrow G \) and \( a\in -G_+ \)
shows \( f(a^{-1}) \in G \), \( (f(a^{-1}))^{-1} \in G \)assumes \( r \text{ is total on } G \)
shows \( G = G_+ \cup (-G_+)\cup \{1 \} \), \( G_+\cap (-G_+) = 0 \), \( 1 \notin G_+\cup (-G_+) \)assumes \( f:X\rightarrow Y \) and \( \forall x\in A.\ b(x)\in B \) and \( X\cap A = \emptyset \) and \( a \notin X\cup A \) and \( g = f \cup \{\langle x,b(x)\rangle .\ x\in A\} \cup \{\langle a,c\rangle \} \)
shows \( g : X\cup A\cup \{a\} \rightarrow Y\cup B\cup \{c\} \), \( \forall x\in X.\ g(x) = f(x) \), \( \forall x\in A.\ g(x) = b(x) \), \( g(a) = c \)assumes \( r \text{ is total on } G \) and \( f: G_+\rightarrow G \)
shows \( f^\circ : G \rightarrow G \), \( \forall a\in G_+.\ (f^\circ )(a) = f(a) \), \( \forall a\in (-G_+).\ (f^\circ )(a) = (f(a^{-1}))^{-1} \), \( (f^\circ )(1 ) = 1 \)assumes \( r \text{ is total on } G \) and \( f: G_+\rightarrow G \) and \( a\in G \)
shows \( (f^\circ )(a^{-1}) = ((f^\circ )(a))^{-1} \)assumes \( p : G\rightarrow G \)
shows \( (\forall a\in G.\ p(a^{-1}) = (p(a))^{-1}) \longleftrightarrow (\forall a\in G.\ (p(a^{-1}))^{-1} = p(a)) \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \neg (a\leq b) \)
shows \( b \leq a \), \( a^{-1} \leq b^{-1} \), \( a\neq b \), \( b \lt a \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( \forall a\in G.\ \exists b\in A.\ a\leq b \)
shows \( \forall a\in G.\ \exists b\in A.\ a\neq b \wedge a\leq b \), \( \neg \text{IsBoundedAbove}(A,r) \), \( A \notin Fin(G) \)assumes \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and \( A\subseteq G \) and \( \text{IsBoundedAbove}(f(A),r) \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( f:A\rightarrow B \), \( g:B\rightarrow C \), \( h:C\rightarrow D \) and \( x\in A \)
shows \( (h\circ g\circ f)(x) \in D \), \( (h\circ g\circ f)(x) = h(g(f(x))) \)assumes \( b \in G \) and \( a\leq b^{-1} \)
shows \( b \leq a^{-1} \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( X\neq 0 \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow a \leq f(y) \) and \( \forall x\in X.\ b(x) \in G \wedge f(b(x)) \leq U \)
shows \( \exists u.\ \forall x\in X.\ b(x) \leq u \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( X\neq 0 \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow f(y^{-1}) \leq a \) and \( \forall x\in X.\ b(x) \in G \wedge L \leq f(b(x)) \)
shows \( \exists l.\ \forall x\in X.\ l \leq b(x) \)