IsarMathLib

Proofs by humans, for humans, formally verified by Isabelle/ZF proof assistant

theory MetricSpace_ZF imports Topology_ZF_1 OrderedLoop_ZF Lattice_ZF
begin

A metric space is a set on which a distance between points is defined as a function \(d:X \times X \to [0,\infty)\). With this definition each metric space is a topological space which is paracompact and Hausdorff (\(T_2\)), hence normal (in fact even perfectly normal).

Pseudometric - definition and basic properties

A metric on \(X\) is usually defined as a function \(d:X \times X \to [0,\infty)\) that satisfies the conditions \(d(x,x) = 0\), \(d(x, y) = 0 \Rightarrow x = y\) (identity of indiscernibles), \(d(x, y) = d(y, x)\) (symmetry) and \(d(x, y) \le d(x, z) + d(z, y)\) (triangle inequality) for all \(x,y \in X\). Here we are going to be a bit more general and define metric and pseudo-metric as a function valued in an ordered loop.

First we define a pseudo-metric, which has the axioms of a metric, but without the second part of the identity of indiscernibles. In our definition IsApseudoMetric is a predicate on five sets: the function \(d\), the set \(X\) on which the metric is defined, the loop carrier \(G\), the loop operation \(A\) and the order \(r\) on \(G\).

Definition

\( \text{IsApseudoMetric}(d,X,G,A,r) \equiv d:X\times X \rightarrow \text{Nonnegative}(G,A,r) \) \( \wedge (\forall x\in X.\ d\langle x,x\rangle = \text{ TheNeutralElement}(G,A))\) \( \wedge (\forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = d\langle y,x\rangle )\) \( \wedge (\forall x\in X.\ \forall y\in X.\ \forall z\in X.\ \langle d\langle x,z\rangle , A\langle d\langle x,y\rangle ,d\langle y,z\rangle \rangle \rangle \in r) \)

We add the full axiom of identity of indiscernibles to the definition of a pseudometric to get the definition of metric.

Definition

\( \text{IsAmetric}(d,X,G,A,r) \equiv \) \( \text{IsApseudoMetric}(d,X,G,A,r) \wedge (\forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = \text{ TheNeutralElement}(G,A) \longrightarrow x=y) \)

A disk is defined as set of points located less than the radius from the center.

Definition

\( \text{Disk}(X,d,r,c,R) \equiv \{x\in X.\ \langle d\langle c,x\rangle ,R\rangle \in \text{StrictVersion}(r)\} \)

Next we define notation for metric spaces. We will reuse the additive notation defined in the loop1 locale adding only the assumption about \(d\) being a pseudometric and notation for a disk centered at \(c\) with radius \(R\). Since for many theorems it is sufficient to assume the pseudometric axioms we will assume in this context that the sets \(d,X,L,A,r\) form a pseudometric raher than a metric.

Locale pmetric_space = loop1 +

assumes pmetricAssum: \( \text{IsApseudoMetric}(d,X,L,A,r) \)

defines \( disk(c,R) \equiv \text{Disk}(X,d,r,c,R) \)

The next lemma shows the definition of the pseudometric in the notation used in the metric_space context.

lemma (in pmetric_space) pmetric_properties:

shows \( d: X\times X \rightarrow L^+ \), \( \forall x\in X.\ d\langle x,x\rangle = 0 \), \( \forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = d\langle y,x\rangle \), \( \forall x\in X.\ \forall y\in X.\ \forall z\in X.\ d\langle x,z\rangle \leq d\langle x,y\rangle + d\langle y,z\rangle \) using pmetricAssum unfolding IsApseudoMetric_def

The definition of the disk in the notation used in the pmetric_space context:

lemma (in pmetric_space) disk_definition:

shows \( disk(c,R) = \{x\in X.\ d\langle c,x\rangle \lt R\} \)proof
have \( disk(c,R) = \text{Disk}(X,d,r,c,R) \)
then have \( disk(c,R) = \{x\in X.\ \langle d\langle c,x\rangle ,R\rangle \in \text{StrictVersion}(r)\} \) unfolding Disk_def
moreover
have \( \forall x\in X.\ \langle d\langle c,x\rangle ,R\rangle \in \text{StrictVersion}(r) \longleftrightarrow d\langle c,x\rangle \lt R \) using def_of_strict_ver
ultimately show \( thesis \)
qed

If the radius is positive then the center is in disk.

lemma (in pmetric_space) center_in_disk:

assumes \( c\in X \) and \( R\in L_+ \)

shows \( c \in disk(c,R) \) using pmetricAssum , assms , IsApseudoMetric_def , PositiveSet_def , disk_definition

A technical lemma that allows us to shorten some proofs:

lemma (in pmetric_space) radius_in_loop:

assumes \( c\in X \) and \( x \in disk(c,R) \)

shows \( R\in L \), \( 0 \lt R \), \( R\in L_+ \), \( ( - d\langle c,x\rangle + R) \in L_+ \)proof
from assms(2) have \( x\in X \) and \( d\langle c,x\rangle \lt R \) using disk_definition
with assms(1) show \( 0 \lt R \) using pmetric_properties(1) , apply_funtype , nonneg_definition , loop_strict_ord_trans
then show \( R\in L \) and \( R\in L_+ \) using posset_definition , PositiveSet_def
from \( d\langle c,x\rangle \lt R \) show \( ( - d\langle c,x\rangle + R) \in L_+ \) using ls_other_side(2)
qed

If a point \(x\) is inside a disk \(B\) and \(m\leq R-d(c,x)\) then the disk centered at the point \(x\) and with radius \(m\) is contained in the disk \(B\).

lemma (in pmetric_space) disk_in_disk:

assumes \( c\in X \) and \( x \in disk(c,R) \) and \( m \leq ( - d\langle c,x\rangle + R) \)

shows \( disk(x,m) \subseteq disk(c,R) \)proof
fix \( y \)
assume \( y \in disk(x,m) \)
then have \( d\langle x,y\rangle \lt m \) using disk_definition
from assms(1,2), \( y \in disk(x,m) \) have \( R\in L \), \( x\in X \), \( y\in X \) using radius_in_loop(1) , disk_definition
with assms(1) have \( d\langle c,y\rangle \leq d\langle c,x\rangle + d\langle x,y\rangle \) using pmetric_properties(4)
from assms(1), \( x\in X \) have \( d\langle c,x\rangle \in L \) using pmetric_properties(1) , apply_funtype , nonneg_subset
with \( d\langle x,y\rangle \lt m \), assms(3) have \( d\langle c,x\rangle + d\langle x,y\rangle \lt d\langle c,x\rangle + ( - d\langle c,x\rangle + R) \) using loop_strict_ord_trans1 , strict_ord_trans_inv(2)
with \( d\langle c,x\rangle \in L \), \( R\in L \), \( d\langle c,y\rangle \leq d\langle c,x\rangle + d\langle x,y\rangle \), \( y\in X \) show \( y \in disk(c,R) \) using lrdiv_props(6) , loop_strict_ord_trans , disk_definition
qed

If we assume that the order on the group makes the positive set a meet semi-lattice (i.e. every two-element subset of \(G_+\) has a greatest lower bound) then the collection of disks centered at points of the space and with radii in the positive set of the group satisfies the base condition. The meet semi-lattice assumption can be weakened to "each two-element subset of \(G_+\) has a lower bound in \(G_+\)", but we don't do that here.

lemma (in pmetric_space) disks_form_base:

assumes \( \text{IsMeetSemilattice}(L_+,r \cap L_+\times L_+) \)

defines \( B \equiv \bigcup c\in X.\ \{disk(c,R).\ R\in L_+\} \)

shows \( B \text{ satisfies the base condition } \)proof
{
fix \( U \) \( V \)
assume \( U\in B \), \( V\in B \)
fix \( x \)
assume \( x\in U\cap V \)
have \( \exists W\in B.\ x\in W \wedge W\subseteq U\cap V \)proof
from assms(2), \( U\in B \), \( V\in B \) obtain \( c_U \) \( c_V \) \( R_U \) \( R_V \) where \( c_U \in X \), \( R_U \in L_+ \), \( c_V \in X \), \( R_V \in L_+ \), \( U = disk(c_U,R_U) \), \( V = disk(c_V,R_V) \)
with \( x\in U\cap V \) have \( x \in disk(c_U,R_U) \) and \( x \in disk(c_V,R_V) \)
then have \( x\in X \), \( d\langle c_U,x\rangle \lt R_U \), \( d\langle c_V,x\rangle \lt R_V \) using disk_definition
let \( m_U = - d\langle c_U,x\rangle + R_U \)
let \( m_V = - d\langle c_V,x\rangle + R_V \)
from \( c_U\in X \), \( x\in disk(c_U,R_U) \), \( c_V\in X \), \( x\in disk(c_V,R_V) \) have \( m_U\in L_+ \) and \( m_V\in L_+ \) using radius_in_loop(4)
let \( m = \text{Meet}(L_+,r \cap L_+\times L_+)\langle m_U,m_V\rangle \)
let \( W = disk(x,m) \)
from assms(1), \( m_U \in L_+ \), \( m_V \in L_+ \) have \( \langle m,m_U\rangle \in r \cap L_+\times L_+ \) using meet_val(3)
moreover
from assms(1), \( m_U \in L_+ \), \( m_V \in L_+ \) have \( \langle m,m_V\rangle \in r \cap L_+\times L_+ \) using meet_val(4)
moreover
from assms(1), \( m_U \in L_+ \), \( m_V \in L_+ \) have \( m \in L_+ \) using meet_val(1)
ultimately have \( m \in L_+ \), \( m \leq m_U \), \( m \leq m_V \)
with \( c_U \in X \), \( x \in disk(c_U,R_U) \), \( c_V \in X \), \( x \in disk(c_V,R_V) \), \( U = disk(c_U,R_U) \), \( V = disk(c_V,R_V) \) have \( W \subseteq U\cap V \) using disk_in_disk
moreover
from assms(2), \( x\in X \), \( m \in L_+ \) have \( W \in B \) and \( x\in W \) using center_in_disk
ultimately show \( thesis \)
qed
}
then show \( thesis \) unfolding SatisfiesBaseCondition_def
qed

Unions of disks form a topology, hence (pseudo)metric spaces are topological spaces. We have to add the assumption that the positive set is not empty. This is necessary to show that we can cover the space with disks and it does not look like it follows from anything we have assumed so far.

theorem (in pmetric_space) pmetric_is_top:

assumes \( \text{IsMeetSemilattice}(L_+,r \cap L_+\times L_+) \), \( L_+\neq 0 \)

defines \( B \equiv \bigcup c\in X.\ \{disk(c,R).\ R\in L_+\} \)

defines \( T \equiv \{\bigcup A.\ A \in Pow(B)\} \)

shows \( T \text{ is a topology } \), \( B \text{ is a base for } T \), \( \bigcup T = X \)proof
from assms(1,3,4) show \( T \text{ is a topology } \), \( B \text{ is a base for } T \) using disks_form_base , Top_1_2_T1
then have \( \bigcup T = \bigcup B \) using Top_1_2_L5
moreover
have \( \bigcup B = X \)proof
from assms(3) show \( \bigcup B \subseteq X \) using disk_definition
{
fix \( x \)
assume \( x\in X \)
from assms(2) obtain \( R \) where \( R\in L_+ \)
with assms(3), \( x\in X \) have \( x \in \bigcup B \) using center_in_disk
}
thus \( X \subseteq \bigcup B \)
qed
ultimately show \( \bigcup T = X \)
qed
end
Definition of IsApseudoMetric: \( \text{IsApseudoMetric}(d,X,G,A,r) \equiv d:X\times X \rightarrow \text{Nonnegative}(G,A,r) \) \( \wedge (\forall x\in X.\ d\langle x,x\rangle = \text{ TheNeutralElement}(G,A))\) \( \wedge (\forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = d\langle y,x\rangle )\) \( \wedge (\forall x\in X.\ \forall y\in X.\ \forall z\in X.\ \langle d\langle x,z\rangle , A\langle d\langle x,y\rangle ,d\langle y,z\rangle \rangle \rangle \in r) \)
Definition of Disk: \( \text{Disk}(X,d,r,c,R) \equiv \{x\in X.\ \langle d\langle c,x\rangle ,R\rangle \in \text{StrictVersion}(r)\} \)
lemma def_of_strict_ver: shows \( \langle x,y\rangle \in \text{StrictVersion}(r) \longleftrightarrow \langle x,y\rangle \in r \wedge x\neq y \)
Definition of PositiveSet: \( \text{PositiveSet}(L,A,r) \equiv \) \( \{x\in L.\ \langle \text{ TheNeutralElement}(L,A),x\rangle \in r \wedge \text{ TheNeutralElement}(L,A)\neq x\} \)
lemma (in pmetric_space) disk_definition: shows \( disk(c,R) = \{x\in X.\ d\langle c,x\rangle \lt R\} \)
lemma (in pmetric_space) pmetric_properties: shows \( d: X\times X \rightarrow L^+ \), \( \forall x\in X.\ d\langle x,x\rangle = 0 \), \( \forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = d\langle y,x\rangle \), \( \forall x\in X.\ \forall y\in X.\ \forall z\in X.\ d\langle x,z\rangle \leq d\langle x,y\rangle + d\langle y,z\rangle \)
lemma (in loop1) nonneg_definition: shows \( x \in L^+ \longleftrightarrow 0 \leq x \)
lemma (in loop1) loop_strict_ord_trans:

assumes \( x\leq y \) and \( y \lt z \)

shows \( x \lt z \)
lemma (in loop1) posset_definition: shows \( x \in L_+ \longleftrightarrow ( 0 \leq x \wedge x\neq 0 ) \)
lemma (in loop1) ls_other_side:

assumes \( x \lt y \)

shows \( 0 \lt - x + y \), \( ( - x + y) \in L_+ \), \( 0 \lt y - x \), \( (y - x) \in L_+ \)
lemma (in pmetric_space) radius_in_loop:

assumes \( c\in X \) and \( x \in disk(c,R) \)

shows \( R\in L \), \( 0 \lt R \), \( R\in L_+ \), \( ( - d\langle c,x\rangle + R) \in L_+ \)
lemma (in pmetric_space) pmetric_properties: shows \( d: X\times X \rightarrow L^+ \), \( \forall x\in X.\ d\langle x,x\rangle = 0 \), \( \forall x\in X.\ \forall y\in X.\ d\langle x,y\rangle = d\langle y,x\rangle \), \( \forall x\in X.\ \forall y\in X.\ \forall z\in X.\ d\langle x,z\rangle \leq d\langle x,y\rangle + d\langle y,z\rangle \)
lemma (in loop1) nonneg_subset: shows \( L^+ \subseteq L \)
lemma (in loop1) loop_strict_ord_trans1:

assumes \( x \lt y \) and \( y\leq z \)

shows \( x \lt z \)
lemma (in loop1) strict_ord_trans_inv:

assumes \( x \lt y \), \( z\in L \)

shows \( x + z \lt y + z \) and \( z + x \lt z + y \)
lemma (in quasigroup0) lrdiv_props:

assumes \( x\in G \), \( y\in G \)

shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)
lemma (in pmetric_space) radius_in_loop:

assumes \( c\in X \) and \( x \in disk(c,R) \)

shows \( R\in L \), \( 0 \lt R \), \( R\in L_+ \), \( ( - d\langle c,x\rangle + R) \in L_+ \)
lemma meet_val:

assumes \( \text{IsMeetSemilattice}(L,r) \), \( x\in L \), \( y\in L \)

defines \( m \equiv \text{Meet}(L,r)\langle x,y\rangle \)

shows \( m\in L \), \( m = \text{Infimum}(r,\{x,y\}) \), \( \langle m,x\rangle \in r \), \( \langle m,y\rangle \in r \)
lemma meet_val:

assumes \( \text{IsMeetSemilattice}(L,r) \), \( x\in L \), \( y\in L \)

defines \( m \equiv \text{Meet}(L,r)\langle x,y\rangle \)

shows \( m\in L \), \( m = \text{Infimum}(r,\{x,y\}) \), \( \langle m,x\rangle \in r \), \( \langle m,y\rangle \in r \)
lemma meet_val:

assumes \( \text{IsMeetSemilattice}(L,r) \), \( x\in L \), \( y\in L \)

defines \( m \equiv \text{Meet}(L,r)\langle x,y\rangle \)

shows \( m\in L \), \( m = \text{Infimum}(r,\{x,y\}) \), \( \langle m,x\rangle \in r \), \( \langle m,y\rangle \in r \)
lemma (in pmetric_space) disk_in_disk:

assumes \( c\in X \) and \( x \in disk(c,R) \) and \( m \leq ( - d\langle c,x\rangle + R) \)

shows \( disk(x,m) \subseteq disk(c,R) \)
lemma (in pmetric_space) center_in_disk:

assumes \( c\in X \) and \( R\in L_+ \)

shows \( c \in disk(c,R) \)
Definition of SatisfiesBaseCondition: \( B \text{ satisfies the base condition } \equiv \) \( \forall U V.\ ((U\in B \wedge V\in B) \longrightarrow (\forall x \in U\cap V.\ \exists W\in B.\ x\in W \wedge W \subseteq U\cap V)) \)
lemma (in pmetric_space) disks_form_base:

assumes \( \text{IsMeetSemilattice}(L_+,r \cap L_+\times L_+) \)

defines \( B \equiv \bigcup c\in X.\ \{disk(c,R).\ R\in L_+\} \)

shows \( B \text{ satisfies the base condition } \)
theorem Top_1_2_T1:

assumes \( B \text{ satisfies the base condition } \) and \( T = \{\bigcup A.\ A\in Pow(B)\} \)

shows \( T \text{ is a topology } \) and \( B \text{ is a base for } T \)
lemma Top_1_2_L5:

assumes \( B \text{ is a base for } T \)

shows \( \bigcup T = \bigcup B \)
47
37
9
9