This theory deals with the relations between continuous functions and convergence of filters. At the end of the file there some results about the building of functions in cartesian products.
First of all, we will define the appropriate tools to work with functions and filters together.
We define the image filter as the collections of supersets of of images of sets from a filter.
definition
\( \mathfrak{F} \text{ is a filter on } X \Longrightarrow f:X\rightarrow Y \Longrightarrow f[\mathfrak{F} ].\ .\ Y \equiv \{A\in Pow(Y).\ \exists D\in \{f(B) .\ B\in \mathfrak{F} \}.\ D\subseteq A\} \)
Note that in the previous definition, it is necessary to state \(Y\) as the final set because \(f\) is also a function to every superset of its range. \(X\) can be changed by \( domain(f) \) without any change in the definition.
lemma base_image_filter:
assumes \( \mathfrak{F} \text{ is a filter on } X \), \( f:X\rightarrow Y \)
shows \( \{fB .\ B\in \mathfrak{F} \} \text{ is a base filter } (f[\mathfrak{F} ].\ .\ Y) \) and \( (f[\mathfrak{F} ].\ .\ Y) \text{ is a filter on } Y \)proofIn this section we show that continuity of a function implies local continuity (at a point) and that local continuity at all points implies (global) continuity.
If a function is continuous, then it is continuous at every point.
lemma cont_global_imp_continuous_x:
assumes \( x\in \bigcup \tau _1 \), \( \text{IsContinuous}(\tau _1,\tau _2,f) \), \( f:(\bigcup \tau _1)\rightarrow (\bigcup \tau _2) \), \( x\in \bigcup \tau _1 \)
shows \( \forall U\in \tau _2.\ f(x)\in U \longrightarrow (\exists V\in \tau _1.\ x\in V \wedge f(V)\subseteq U) \)proofA function that is continuous at every point of its domain is continuous.
lemma ccontinuous_all_x_imp_cont_global:
assumes \( \forall x\in \bigcup \tau _1.\ \forall U\in \tau _2.\ fx\in U \longrightarrow (\exists V\in \tau _1.\ x\in V \wedge fV\subseteq U) \), \( f\in (\bigcup \tau _1)\rightarrow (\bigcup \tau _2) \) and \( \tau _1 \text{ is a topology } \)
shows \( \text{IsContinuous}(\tau _1,\tau _2,f) \)proofIn this section we consider the relations between filters and continuity.
If the function is continuous then if the filter converges to a point the image filter converges to the image point.
lemma (in two_top_spaces0) cont_imp_filter_conver_preserved:
assumes \( \mathfrak{F} \text{ is a filter on } X_1 \), \( f \text{ is continuous } \), \( \mathfrak{F} \rightarrow _F x\text{ in }\tau _1 \)
shows \( (f[\mathfrak{F} ].\ .\ X_2) \rightarrow _F (f(x))\text{ in }\tau _2 \)proofContinuity in filter at every point of the domain implies global continuity.
lemma (in two_top_spaces0) filter_conver_preserved_imp_cont:
assumes \( \forall x\in \bigcup \tau _1.\ \forall \mathfrak{F} .\ ((\mathfrak{F} \text{ is a filter on } X_1) \wedge (\mathfrak{F} \rightarrow _F x\text{ in }\tau _1)) \longrightarrow ((f[\mathfrak{F} ].\ .\ X_2) \rightarrow _F (fx)\text{ in }\tau _2) \)
shows \( f\text{ is continuous } \)proofassumes \( C\subseteq Pow(X) \) and \( C \text{ satisfies the filter base condition } \)
shows \( ((C \text{ is a base filter } \mathfrak{F} ) \wedge \bigcup \mathfrak{F} =X) \longleftrightarrow \mathfrak{F} =\{A\in Pow(X).\ \exists D\in C.\ D\subseteq A\} \)assumes \( C \text{ is a base filter } \mathfrak{F} \)
shows \( (C \text{ satisfies the filter base condition }) \longleftrightarrow (\mathfrak{F} \text{ is a filter on } \bigcup \mathfrak{F} ) \)assumes \( f:X\rightarrow Y \)
shows \( function(f) \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A)\subseteq X \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( A \subseteq f^{-1}(f(A)) \)assumes \( \forall x\in V.\ \exists U\in T.\ (x\in U \wedge U\subseteq V) \)
shows \( V\in T \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( f:X\rightarrow Y \)
shows \( \{fB .\ B\in \mathfrak{F} \} \text{ is a base filter } (f[\mathfrak{F} ].\ .\ Y) \) and \( (f[\mathfrak{F} ].\ .\ Y) \text{ is a filter on } Y \)assumes \( \mathfrak{F} \text{ is a filter on } \bigcup T \) and \( C \text{ is a base filter } \mathfrak{F} \) and \( \forall U\in Pow(\bigcup T).\ x\in int(U) \longrightarrow (\exists D\in C.\ D\subseteq U) \) and \( x\in \bigcup T \)
shows \( \mathfrak{F} \rightarrow _F x \)assumes \( x\in \bigcup T \)
defines \( \text{Neigh}\equiv \{U\in Pow(\bigcup T).\ x\in int(U)\} \)
shows \( \text{Neigh} \text{ is a filter on }\bigcup T \) and \( \text{Neigh} \rightarrow _F x \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( f:X\rightarrow Y \)
shows \( \{fB .\ B\in \mathfrak{F} \} \text{ is a base filter } (f[\mathfrak{F} ].\ .\ Y) \) and \( (f[\mathfrak{F} ].\ .\ Y) \text{ is a filter on } Y \)assumes \( \mathfrak{F} \text{ is a filter on } X \), \( f:X\rightarrow Y \)
shows \( \{fB .\ B\in \mathfrak{F} \} \text{ is a base filter } (f[\mathfrak{F} ].\ .\ Y) \) and \( (f[\mathfrak{F} ].\ .\ Y) \text{ is a filter on } Y \)assumes \( A\in \mathfrak{F} \) and \( C \text{ is a base filter } \mathfrak{F} \)
shows \( \exists D\in C.\ D\subseteq A \)assumes \( \forall x\in \bigcup \tau _1.\ \forall U\in \tau _2.\ fx\in U \longrightarrow (\exists V\in \tau _1.\ x\in V \wedge fV\subseteq U) \), \( f\in (\bigcup \tau _1)\rightarrow (\bigcup \tau _2) \) and \( \tau _1 \text{ is a topology } \)
shows \( \text{IsContinuous}(\tau _1,\tau _2,f) \)