This theory continues Group_ZF and considers lifting the group structure to function spaces and projecting the group structure to quotient spaces, in particular the quotient qroup. We also define group homomorphisms and in particular the space \( \text{End}(G,P) \) of homomorphisms of a group into itself.
If we have a monoid (group) \(G\) than we get a monoid (group) structure on a space of functions valued in in \(G\) by defining \((f\cdot g)(x) := f(x)\cdot g(x)\). We call this process ''lifting the monoid (group) to function space''. This section formalizes this lifting.
The lifted operation is an operation on the function space.
lemma (in monoid0) Group_ZF_2_1_L0A:
assumes A1: \( F = f \text{ lifted to function space over } X \)
shows \( F : (X\rightarrow G)\times (X\rightarrow G)\rightarrow (X\rightarrow G) \)proofThe result of the lifted operation is in the function space.
lemma (in monoid0) Group_ZF_2_1_L0:
assumes A1: \( F = f \text{ lifted to function space over } X \) and A2: \( s:X\rightarrow G \), \( r:X\rightarrow G \)
shows \( F\langle s,r\rangle : X\rightarrow G \)proofThe lifted monoid operation has a neutral element, namely the constant function with the neutral element as the value.
lemma (in monoid0) Group_ZF_2_1_L1:
assumes A1: \( F = f \text{ lifted to function space over } X \) and A2: \( E = \text{ConstantFunction}(X,\text{ TheNeutralElement}(G,f)) \)
shows \( E : X\rightarrow G \wedge (\forall s\in X\rightarrow G.\ F\langle E,s\rangle = s \wedge F\langle s,E\rangle = s) \)proofMonoids can be lifted to a function space.
lemma (in monoid0) Group_ZF_2_1_T1:
assumes A1: \( F = f \text{ lifted to function space over } X \)
shows \( \text{IsAmonoid}(X\rightarrow G,F) \)proofThe constant function with the neutral element as the value is the neutral element of the lifted monoid.
lemma Group_ZF_2_1_L2:
assumes A1: \( \text{IsAmonoid}(G,f) \) and A2: \( F = f \text{ lifted to function space over } X \) and A3: \( E = \text{ConstantFunction}(X,\text{ TheNeutralElement}(G,f)) \)
shows \( E = \text{ TheNeutralElement}(X\rightarrow G,F) \)proofThe lifted operation acts on the functions in a natural way defined by the monoid operation.
lemma (in monoid0) lifted_val:
assumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x) \oplus r(x) \) using monoidAssum, assms, IsAmonoid_def, IsAssociative_def, group0_1_L3B, func_ZF_1_L4The lifted operation acts on the functions in a natural way defined by the group operation. This is the same as lifted_val, but in the group0 context.
lemma (in group0) Group_ZF_2_1_L3:
assumes \( F = P \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x)\cdot r(x) \) using assms, group0_2_L1, lifted_valIn the group0 context we can apply theorems proven in monoid0 context to the lifted monoid.
lemma (in group0) Group_ZF_2_1_L4:
assumes A1: \( F = P \text{ lifted to function space over } X \)
shows \( monoid0(X\rightarrow G,F) \)proofThe compostion of a function \(f:X\rightarrow G\) with the group inverse is a right inverse for the lifted group.
lemma (in group0) Group_ZF_2_1_L5:
assumes A1: \( F = P \text{ lifted to function space over } X \) and A2: \( s : X\rightarrow G \) and A3: \( i = \text{GroupInv}(G,P)\circ s \)
shows \( i: X\rightarrow G \) and \( F\langle s,i\rangle = \text{ TheNeutralElement}(X\rightarrow G,F) \)proofGroups can be lifted to the function space.
theorem (in group0) Group_ZF_2_1_T2:
assumes A1: \( F = P \text{ lifted to function space over } X \)
shows \( \text{IsAgroup}(X\rightarrow G,F) \)proofThe propositions proven in the group0 context are valid in the same context when applied to the function space with the lifted group operation.
lemma (in group0) group0_valid_fun_space:
shows \( group0(X\rightarrow G,P \text{ lifted to function space over } X) \) using Group_ZF_2_1_T2 unfolding group0_defWhat is the group inverse for the lifted group?
lemma (in group0) Group_ZF_2_1_L6:
assumes A1: \( F = P \text{ lifted to function space over } X \)
shows \( \forall s\in (X\rightarrow G).\ \text{GroupInv}(X\rightarrow G,F)(s) = \text{GroupInv}(G,P)\circ s \)proofWhat is the value of the group inverse for the lifted group?
corollary (in group0) lift_gr_inv_val:
assumes \( F = P \text{ lifted to function space over } X \) and \( s : X\rightarrow G \) and \( x\in X \)
shows \( ( \text{GroupInv}(X\rightarrow G,F)(s))(x) = (s(x))^{-1} \) using groupAssum, assms, Group_ZF_2_1_L6, group0_2_T2, comp_fun_applyWhat is the group inverse in a subgroup of the lifted group?
lemma (in group0) Group_ZF_2_1_L6A:
assumes A1: \( F = P \text{ lifted to function space over } X \) and A2: \( \text{IsAsubgroup}(H,F) \) and A3: \( g = \text{restrict}(F,H\times H) \) and A4: \( s\in H \)
shows \( \text{GroupInv}(H,g)(s) = \text{GroupInv}(G,P)\circ s \)proofThe neutral element of a subgroup of the lifted group is the constant function with value equal to the neutral element of the group.
lemma (in group0) lift_group_subgr_neut:
assumes \( F = P \text{ lifted to function space over } X \) and \( \text{IsAsubgroup}(H,F) \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(F,H\times H)) = \text{ConstantFunction}(X,1 ) \)proofIf a group is abelian, then its lift to a function space is also abelian.
lemma (in group0) Group_ZF_2_1_L7:
assumes A1: \( F = P \text{ lifted to function space over } X \) and A2: \( P \text{ is commutative on } G \)
shows \( F \text{ is commutative on } (X\rightarrow G) \)proofThe goal of this section is to establish that (under some conditions) given an equivalence relation on a group or (monoid )we can project the group (monoid) structure on the quotient and obtain another group.
The neutral element class is neutral in the projection.
lemma (in monoid0) Group_ZF_2_2_L1:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,f) \) and A3: \( F = \text{ProjFun2}(G,r,f) \) and A4: \( e = \text{ TheNeutralElement}(G,f) \)
shows \( r\{e\} \in G//r \wedge \) \( (\forall c \in G//r.\ F\langle r\{e\},c\rangle = c \wedge F\langle c,r\{e\}\rangle = c) \)proofThe projected structure is a monoid.
theorem (in monoid0) Group_ZF_2_2_T1:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,f) \) and A3: \( F = \text{ProjFun2}(G,r,f) \)
shows \( \text{IsAmonoid}(G//r,F) \)proofThe class of the neutral element is the neutral element of the projected monoid.
lemma Group_ZF_2_2_L1:
assumes A1: \( \text{IsAmonoid}(G,f) \) and A2: \( \text{equiv}(G,r) \) and A3: \( \text{Congruent2}(r,f) \) and A4: \( F = \text{ProjFun2}(G,r,f) \) and A5: \( e = \text{ TheNeutralElement}(G,f) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r,F) \)proofThe projected operation can be defined in terms of the group operation on representants in a natural way.
lemma (in group0) Group_ZF_2_2_L2:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,P) \) and A3: \( F = \text{ProjFun2}(G,r,P) \) and A4: \( a\in G \), \( b\in G \)
shows \( F\langle r\{a\},r\{b\}\rangle = r\{a\cdot b\} \)proofThe class of the inverse is a right inverse of the class.
lemma (in group0) Group_ZF_2_2_L3:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,P) \) and A3: \( F = \text{ProjFun2}(G,r,P) \) and A4: \( a\in G \)
shows \( F\langle r\{a\},r\{a^{-1}\}\rangle = \text{ TheNeutralElement}(G//r,F) \)proofThe group structure can be projected to the quotient space.
theorem (in group0) Group_ZF_3_T2:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,P) \)
shows \( \text{IsAgroup}(G//r, \text{ProjFun2}(G,r,P)) \)proofThe group inverse (in the projected group) of a class is the class of the inverse.
lemma (in group0) Group_ZF_2_2_L4:
assumes A1: \( \text{equiv}(G,r) \) and A2: \( \text{Congruent2}(r,P) \) and A3: \( F = \text{ProjFun2}(G,r,P) \) and A4: \( a\in G \)
shows \( r\{a^{-1}\} = \text{GroupInv}(G//r,F)(r\{a\}) \)proofIf \(H\) is a subgroup of \(G\), then for every \(a\in G\) we can cosider the sets \(\{a\cdot h. h \in H\}\) and \(\{ h\cdot a. h \in H\}\) (called a left and right ''coset of H'', resp.) These sets sometimes form a group, called the ''quotient group''. This section discusses the notion of quotient groups.
A normal subgorup \(N\) of a group \(G\) is such that \(aba^{-1}\) belongs to \(N\) if \(a\in G, b\in N\).
definition
\( \text{IsAnormalSubgroup}(G,P,N) \equiv \text{IsAsubgroup}(N,P) \wedge \) \( (\forall n\in N.\ \forall g\in G.\ P\langle P\langle g,n \rangle , \text{GroupInv}(G,P)(g) \rangle \in N) \)
Having a group and a normal subgroup \(N\) we can create another group consisting of eqivalence classes of the relation \(a\sim b \equiv a\cdot b^{-1} \in N\). We will refer to this relation as the quotient group relation. The classes of this relation are in fact cosets of subgroup \(H\).
definition
\( \text{QuotientGroupRel}(G,P,H) \equiv \) \( \{\langle a,b\rangle \in G\times G.\ P\langle a, \text{GroupInv}(G,P)(b)\rangle \in H\} \)
Next we define the operation in the quotient group as the projection of the group operation on the classses of the quotient group relation.
definition
\( \text{QuotientGroupOp}(G,P,H) \equiv \text{ProjFun2}(G, \text{QuotientGroupRel}(G,P,H ),P) \)
Definition of a normal subgroup in a more readable notation.
lemma (in group0) Group_ZF_2_4_L0:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( g\in G \), \( n\in H \)
shows \( g\cdot n\cdot g^{-1} \in H \) using assms, IsAnormalSubgroup_defThe quotient group relation is reflexive.
lemma (in group0) Group_ZF_2_4_L1:
assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{refl}(G, \text{QuotientGroupRel}(G,P,H)) \) using assms, group0_2_L6, group0_3_L5, QuotientGroupRel_def, refl_defThe quotient group relation is symmetric.
lemma (in group0) Group_ZF_2_4_L2:
assumes A1: \( \text{IsAsubgroup}(H,P) \)
shows \( sym( \text{QuotientGroupRel}(G,P,H)) \)proofThe quotient group relation is transistive.
lemma (in group0) Group_ZF_2_4_L3A:
assumes A1: \( \text{IsAsubgroup}(H,P) \) and A2: \( \langle a,b\rangle \in \text{QuotientGroupRel}(G,P,H) \) and A3: \( \langle b,c\rangle \in \text{QuotientGroupRel}(G,P,H) \)
shows \( \langle a,c\rangle \in \text{QuotientGroupRel}(G,P,H) \)proofThe quotient group relation is an equivalence relation. Note we do not need the subgroup to be normal for this to be true.
lemma (in group0) Group_ZF_2_4_L3:
assumes A1: \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)proofThe next lemma states the essential condition for congruency of the group operation with respect to the quotient group relation.
lemma (in group0) Group_ZF_2_4_L4:
assumes A1: \( \text{IsAnormalSubgroup}(G,P,H) \) and A2: \( \langle a1,a2\rangle \in \text{QuotientGroupRel}(G,P,H) \) and A3: \( \langle b1,b2\rangle \in \text{QuotientGroupRel}(G,P,H) \)
shows \( \langle a1\cdot b1, a2\cdot b2\rangle \in \text{QuotientGroupRel}(G,P,H) \)proofIf the subgroup is normal, the group operation is congruent with respect to the quotient group relation.
lemma Group_ZF_2_4_L5A:
assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \) using assms, group0_def, Group_ZF_2_4_L4, Congruent2_defThe quotient group is indeed a group.
theorem Group_ZF_2_4_T1:
assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{IsAgroup}(G// \text{QuotientGroupRel}(G,P,H), \text{QuotientGroupOp}(G,P,H)) \) using assms, group0_def, Group_ZF_2_4_L3, IsAnormalSubgroup_def, Group_ZF_2_4_L5A, Group_ZF_3_T2, QuotientGroupOp_defThe class (coset) of the neutral element is the neutral element of the quotient group.
lemma Group_ZF_2_4_L5B:
assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( e = \text{ TheNeutralElement}(G,P) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) \) using assms, IsAnormalSubgroup_def, group0_def, IsAgroup_def, Group_ZF_2_4_L3, Group_ZF_2_4_L5A, QuotientGroupOp_def, Group_ZF_2_2_L1A group element is equivalent to the neutral element iff it is in the subgroup we divide the group by.
lemma (in group0) Group_ZF_2_4_L5C:
assumes \( a\in G \)
shows \( \langle a,1 \rangle \in \text{QuotientGroupRel}(G,P,H) \longleftrightarrow a\in H \) using assms, QuotientGroupRel_def, group_inv_of_one, group0_2_L2A group element is in \(H\) iff its class is the neutral element of \(G/H\).
lemma (in group0) Group_ZF_2_4_L5D:
assumes A1: \( \text{IsAnormalSubgroup}(G,P,H) \) and A2: \( a\in G \) and A3: \( r = \text{QuotientGroupRel}(G,P,H) \) and A4: \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow \langle a,1 \rangle \in r \)proofThe class of \(a\in G\) is the neutral element of the quotient \(G/H\) iff \(a\in H\).
lemma (in group0) Group_ZF_2_4_L5E:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow a\in H \) using assms, Group_ZF_2_4_L5C, Group_ZF_2_4_L5DEssential condition to show that every subgroup of an abelian group is normal.
lemma (in group0) Group_ZF_2_4_L5:
assumes A1: \( P \text{ is commutative on } G \) and A2: \( \text{IsAsubgroup}(H,P) \) and A3: \( g\in G \), \( h\in H \)
shows \( g\cdot h\cdot g^{-1} \in H \)proofEvery subgroup of an abelian group is normal. Moreover, the quotient group is also abelian.
lemma Group_ZF_2_4_L6:
assumes A1: \( \text{IsAgroup}(G,P) \) and A2: \( P \text{ is commutative on } G \) and A3: \( \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \), \( \text{QuotientGroupOp}(G,P,H) \text{ is commutative on } (G// \text{QuotientGroupRel}(G,P,H)) \)proofThe group inverse (in the quotient group) of a class (coset) is the class of the inverse.
lemma (in group0) Group_ZF_2_4_L7:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( F = \text{QuotientGroupOp}(G,P,H) \)
shows \( r\{a^{-1}\} = \text{GroupInv}(G//r,F)(r\{a\}) \) using groupAssum, assms, IsAnormalSubgroup_def, Group_ZF_2_4_L3, Group_ZF_2_4_L5A, QuotientGroupOp_def, Group_ZF_2_2_L4On every space of functions \(\{f : X\rightarrow X\}\) we can define a natural monoid structure with composition as the operation. This section explores this fact.
The next lemma states that composition has a neutral element, namely the identity function on \(X\) (the one that maps \(x\in X\) into itself).
lemma Group_ZF_2_5_L1:
assumes A1: \( F = \text{Composition}(X) \)
shows \( \exists I\in (X\rightarrow X).\ \forall f\in (X\rightarrow X).\ F\langle I,f\rangle = f \wedge F\langle f,I\rangle = f \)proofThe space of functions that map a set \(X\) into itsef is a monoid with composition as operation and the identity function as the neutral element.
lemma Group_ZF_2_5_L2:
shows \( \text{IsAmonoid}(X\rightarrow X, \text{Composition}(X)) \), \( id(X) = \text{ TheNeutralElement}(X\rightarrow X, \text{Composition}(X)) \)proofA homomorphism is a function between groups that preserves the group operations.
In general we may have a homomorphism not only between groups, but also between various algebraic structures with one operation like magmas, semigroups, quasigroups, loops and monoids. In all cases the homomorphism is defined by using the morphism property. In the multiplicative notation we we will write that \(f\) has a morphism property if \(f(x\cdot_G y) = f(x)\cdot_H f(y)\) for all \(x,y\in G\). Below we write this definition in raw set theory notation and use the expression IsMorphism instead of the possible, but longer HasMorphismProperty.
definition
\( \text{IsMorphism}(G,P,F,f) \equiv \forall g_1\in G.\ \forall g_2\in G.\ f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \)
A function \(f:G\rightarrow H\) between algebraic structures \((G,\cdot_G)\) and \((H,\cdot_H)\) with one operation (each) is a homomorphism if it has the morphism property.
definition
\( \text{Homomor}(f,G,P,H,F) \equiv f:G\rightarrow H \wedge \text{IsMorphism}(G,P,F,f) \)
Now a lemma about the definition:
lemma homomor_eq:
assumes \( \text{Homomor}(f,G,P,H,F) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \) using assms unfolding Homomor_def, IsMorphism_defAn endomorphism is a homomorphism from a group to the same group. We define \( \text{End}(G,P) \) as the set of endomorphisms for a given group. As we show later when the group is abelian, the set of endomorphisms with pointwise adddition and composition as multiplication forms a ring.
definition
\( \text{End}(G,P) \equiv \{f\in G\rightarrow G.\ \text{Homomor}(f,G,P,G,P)\} \)
The defining property of an endomorphism written in notation used in group0 context:
lemma (in group0) endomor_eq:
assumes \( f \in \text{End}(G,P) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(g_1\cdot g_2) = f(g_1)\cdot f(g_2) \) using assms, homomor_eq unfolding End_defA function that maps a group \(G\) into itself and satisfies \(f(g_1\cdot g2) = f(g_1)\cdot f(g_2)\) is an endomorphism.
lemma (in group0) eq_endomor:
assumes \( f:G\rightarrow G \) and \( \forall g_1\in G.\ \forall g_2\in G.\ f(g_1\cdot g_2)=f(g_1)\cdot f(g_2) \)
shows \( f \in \text{End}(G,P) \) using assms unfolding End_def, Homomor_def, IsMorphism_defThe set of endomorphisms forms a submonoid of the monoid of function from a set to that set under composition.
lemma (in group0) end_composition:
assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)proofWe will use some binary operations that are naturally defined on the function space \(G\rightarrow G\), but we consider them restricted to the endomorphisms of \(G\). To shorten the notation in such case we define an abbreviation \( \text{InEnd}(F,G,P) \) which restricts a binary operation \(F\) to the set of endomorphisms of \(G\).
abbreviation
\( \text{InEnd}(F,G,P) \equiv \text{restrict}(F, \text{End}(G,P)\times \text{End}(G,P)) \)
Endomoprhisms of a group form a monoid with composition as the binary operation, and the identity map as the neutral element.
theorem (in group0) end_comp_monoid:
shows \( \text{IsAmonoid}( \text{End}(G,P),\text{InEnd}( \text{Composition}(G),G,P)) \) and \( \text{ TheNeutralElement}( \text{End}(G,P),\text{InEnd}( \text{Composition}(G),G,P)) = id(G) \)proofassumes \( f : Y\times Y\rightarrow Y \) and \( F = f \text{ lifted to function space over } X \)
shows \( F : (X\rightarrow \text{range}(f))\times (X\rightarrow \text{range}(f))\rightarrow (X\rightarrow \text{range}(f)) \)assumes \( F = f \text{ lifted to function space over } X \)
shows \( F : (X\rightarrow G)\times (X\rightarrow G)\rightarrow (X\rightarrow G) \)assumes \( e = \text{ TheNeutralElement}(G,f) \)
shows \( e \in G \wedge (\forall g\in G.\ e \oplus g = g \wedge g \oplus e = g) \)assumes \( c\in Y \)
shows \( \text{ConstantFunction}(X,c) : X\rightarrow Y \)assumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \)
shows \( F\langle s,r\rangle : X\rightarrow G \)assumes \( f : Y\times Y\rightarrow Y \) and \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow \text{range}(f) \), \( r:X\rightarrow \text{range}(f) \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = f\langle s(x),r(x)\rangle \)assumes \( x\in X \)
shows \( \text{ConstantFunction}(X,c)(x) = c \)assumes \( f \text{ is associative on } G \) and \( F = f \text{ lifted to function space over } X \)
shows \( F \text{ is associative on } (X\rightarrow \text{range}(f)) \)assumes \( F = f \text{ lifted to function space over } X \) and \( E = \text{ConstantFunction}(X,\text{ TheNeutralElement}(G,f)) \)
shows \( E : X\rightarrow G \wedge (\forall s\in X\rightarrow G.\ F\langle E,s\rangle = s \wedge F\langle s,E\rangle = s) \)assumes \( F = f \text{ lifted to function space over } X \)
shows \( \text{IsAmonoid}(X\rightarrow G,F) \)assumes \( e \in G \wedge (\forall g\in G.\ e \oplus g = g \wedge g \oplus e = g) \)
shows \( e = \text{ TheNeutralElement}(G,f) \)assumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x) \oplus r(x) \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( monoid0(X\rightarrow G,F) \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( F = P \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x)\cdot r(x) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( \text{IsAmonoid}(G,f) \) and \( F = f \text{ lifted to function space over } X \) and \( E = \text{ConstantFunction}(X,\text{ TheNeutralElement}(G,f)) \)
shows \( E = \text{ TheNeutralElement}(X\rightarrow G,F) \)assumes \( F = P \text{ lifted to function space over } X \) and \( s : X\rightarrow G \) and \( i = \text{GroupInv}(G,P)\circ s \)
shows \( i: X\rightarrow G \) and \( F\langle s,i\rangle = \text{ TheNeutralElement}(X\rightarrow G,F) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \text{IsAgroup}(X\rightarrow G,F) \)assumes \( \forall g\in G.\ b(g) \in G \wedge g\cdot b(g) = 1 \)
shows \( \forall g\in G.\ b(g) = g^{-1} \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \forall s\in (X\rightarrow G).\ \text{GroupInv}(X\rightarrow G,F)(s) = \text{GroupInv}(G,P)\circ s \)assumes \( \text{IsAsubgroup}(H,P) \) and \( g = \text{restrict}(P,H\times H) \)
shows \( \text{GroupInv}(H,g) = \text{restrict}( \text{GroupInv}(G,P),H) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(P,H\times H)) = 1 \)assumes \( f : G\times G\rightarrow G \) and \( f \text{ is commutative on } G \) and \( F = f \text{ lifted to function space over } X \)
shows \( F \text{ is commutative on } (X\rightarrow \text{range}(f)) \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)assumes \( \text{IsAmonoid}(G,f) \) and \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \) and \( e = \text{ TheNeutralElement}(G,f) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r,F) \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( f \text{ is associative on } A \)
shows \( \text{ProjFun2}(A,r,f) \text{ is associative on } A//r \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \)
shows \( \text{IsAmonoid}(G//r,F) \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \) and \( F = \text{ProjFun2}(G,r,P) \) and \( a\in G \), \( b\in G \)
shows \( F\langle r\{a\},r\{b\}\rangle = r\{a\cdot b\} \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \) and \( F = \text{ProjFun2}(G,r,P) \) and \( a\in G \)
shows \( F\langle r\{a\},r\{a^{-1}\}\rangle = \text{ TheNeutralElement}(G//r,F) \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \)
shows \( \text{IsAgroup}(G//r, \text{ProjFun2}(G,r,P)) \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( 1 \in H \)assumes \( \text{IsAsubgroup}(H,P) \) and \( h\in H \)
shows \( h^{-1}\in H \)assumes \( a\in G \), \( b\in G \)
shows \( (a\cdot b^{-1})^{-1} = b\cdot a^{-1} \), \( (a^{-1}\cdot b)^{-1} = b^{-1}\cdot a \)assumes \( \text{IsAsubgroup}(H,P) \) and \( a\in H \), \( b\in H \)
shows \( a\cdot b \in H \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot c^{-1}= (a\cdot b^{-1})\cdot (b\cdot c^{-1}) \), \( a^{-1}\cdot c = (a^{-1}\cdot b)\cdot (b^{-1}\cdot c) \), \( a\cdot (b\cdot c)^{-1} = a\cdot c^{-1}\cdot b^{-1} \), \( a\cdot (b\cdot c^{-1}) = a\cdot b\cdot c^{-1} \), \( (a\cdot b^{-1}\cdot c^{-1})^{-1} = c\cdot b\cdot a^{-1} \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot b^{-1}) = a \), \( a\cdot (b\cdot c)\cdot c^{-1} = a\cdot b \)assumes \( \text{IsAsubgroup}(H,P) \) and \( \langle a,b\rangle \in \text{QuotientGroupRel}(G,P,H) \) and \( \langle b,c\rangle \in \text{QuotientGroupRel}(G,P,H) \)
shows \( \langle a,c\rangle \in \text{QuotientGroupRel}(G,P,H) \)assumes \( \forall x y z.\ \langle x, y\rangle \in r \wedge \langle y, z\rangle \in r \longrightarrow \langle x, z\rangle \in r \)
shows \( \text{trans}(r) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{refl}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( sym( \text{QuotientGroupRel}(G,P,H)) \)assumes \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( (a\cdot b)\cdot (c\cdot d)^{-1} = a\cdot (b\cdot d^{-1})\cdot a^{-1}\cdot (a\cdot c^{-1}) \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( \langle a1,a2\rangle \in \text{QuotientGroupRel}(G,P,H) \) and \( \langle b1,b2\rangle \in \text{QuotientGroupRel}(G,P,H) \)
shows \( \langle a1\cdot b1, a2\cdot b2\rangle \in \text{QuotientGroupRel}(G,P,H) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( e = \text{ TheNeutralElement}(G,P) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{equiv}(X,r) \) and \( \langle x,y\rangle \in r \)
shows \( \langle y,x\rangle \in r \)assumes \( a\in G \)
shows \( \langle a,1 \rangle \in \text{QuotientGroupRel}(G,P,H) \longleftrightarrow a\in H \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow \langle a,1 \rangle \in r \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot c = c\cdot a\cdot b \), \( a^{-1}\cdot (b^{-1}\cdot c^{-1})^{-1} = (a\cdot (b\cdot c)^{-1})^{-1} \), \( a\cdot (b\cdot c)^{-1} = a\cdot b^{-1}\cdot c^{-1} \), \( a\cdot (b\cdot c^{-1})^{-1} = a\cdot b^{-1}\cdot c \), \( a\cdot b^{-1}\cdot c^{-1} = a\cdot c^{-1}\cdot b^{-1} \)assumes \( P \text{ is commutative on } G \) and \( \text{IsAsubgroup}(H,P) \) and \( g\in G \), \( h\in H \)
shows \( g\cdot h\cdot g^{-1} \in H \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( f \text{ is commutative on } A \)
shows \( \text{ProjFun2}(A,r,f) \text{ is commutative on } A//r \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \) and \( F = \text{ProjFun2}(G,r,P) \) and \( a\in G \)
shows \( r\{a^{-1}\} = \text{GroupInv}(G//r,F)(r\{a\}) \)assumes \( f : X\rightarrow X \)
shows \( \text{Composition}(X)\langle f,id(X)\rangle = f \), \( \text{Composition}(X)\langle id(X),f\rangle = f \)assumes \( F = \text{Composition}(X) \)
shows \( \exists I\in (X\rightarrow X).\ \forall f\in (X\rightarrow X).\ F\langle I,f\rangle = f \wedge F\langle f,I\rangle = f \)assumes \( \text{Homomor}(f,G,P,H,F) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( f \in \text{End}(G,P) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(g_1\cdot g_2) = f(g_1)\cdot f(g_2) \)assumes \( f:G\rightarrow G \) and \( \forall g_1\in G.\ \forall g_2\in G.\ f(g_1\cdot g_2)=f(g_1)\cdot f(g_2) \)
shows \( f \in \text{End}(G,P) \)assumes \( f:X\rightarrow X \) and \( g:X\rightarrow X \)
shows \( \text{Composition}(X)\langle f,g\rangle = f\circ g \)assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)assumes \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{IsAmonoid}(H,\text{restrict}(f,H\times H)) \)assumes \( \text{IsAmonoid}(G,f) \) and \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(f,H\times H)) = \text{ TheNeutralElement}(G,f) \)