This theory file deals with normal subgroup test and some finite group theory. Then we define group homomorphisms and prove that the set of endomorphisms forms a ring with unity and we also prove the first isomorphism theorem.
First we show some properties of conjugation
The conjugate of a subgroup is a subgroup.
theorem (in group0) conj_group_is_group:
assumes \( \text{IsAsubgroup}(H,P) \), \( g\in G \)
shows \( \text{IsAsubgroup}(\{g\cdot (h\cdot g^{-1}).\ h\in H\},P) \)proofEvery set is equipollent with its conjugates.
theorem (in group0) conj_set_is_eqpoll:
assumes \( H\subseteq G \), \( g\in G \)
shows \( H\approx \{g\cdot (h\cdot g^{-1}).\ h\in H\} \)proofEvery normal subgroup contains its conjugate subgroups.
theorem (in group0) norm_group_cont_conj:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \), \( g\in G \)
shows \( \{g\cdot (h\cdot g^{-1}).\ h\in H\}\subseteq H \)proofIf a subgroup contains all its conjugate subgroups, then it is normal.
theorem (in group0) cont_conj_is_normal:
assumes \( \text{IsAsubgroup}(H,P) \), \( \forall g\in G.\ \{g\cdot (h\cdot g^{-1}).\ h\in H\}\subseteq H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)proofIf a group has only one subgroup of a given order, then this subgroup is normal.
corollary (in group0) only_one_equipoll_sub:
assumes \( \text{IsAsubgroup}(H,P) \), \( \forall M.\ \text{IsAsubgroup}(M,P)\wedge H\approx M \longrightarrow M=H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)proofThe trivial subgroup is then a normal subgroup.
corollary (in group0) trivial_normal_subgroup:
shows \( \text{IsAnormalSubgroup}(G,P,\{1 \}) \)proofThe whole group is normal as a subgroup
lemma (in group0) whole_normal_subgroup:
shows \( \text{IsAnormalSubgroup}(G,P,G) \)proofIn this subsection we study the groups that build the rest of the groups: the simple groups.
Since the whole group and the trivial subgroup are always normal, it is natural to define simplicity of groups in the following way:
definition
\( [G,f]\text{ is a simple group } \equiv \text{IsAgroup}(G,f) \wedge (\forall M.\ \text{IsAnormalSubgroup}(G,f,M) \longrightarrow M=G\vee M=\{\text{ TheNeutralElement}(G,f)\}) \)
From the definition follows that if a group has no subgroups, then it is simple.
corollary (in group0) noSubgroup_imp_simple:
assumes \( \forall H.\ \text{IsAsubgroup}(H,P)\longrightarrow H=G\vee H=\{1 \} \)
shows \( [G,P]\text{ is a simple group } \)proofWe add a context for an abelian group
locale abelian_group = group0 +
assumes isAbelian: \( P \text{ is commutative on } G \)
Since every subgroup is normal in abelian groups, it follows that commutative simple groups do not have subgroups.
corollary (in abelian_group) abelian_simple_noSubgroups:
assumes \( [G,P]\text{ is a simple group } \)
shows \( \forall H.\ \text{IsAsubgroup}(H,P)\longrightarrow H=G\vee H=\{1 \} \)proofThis subsection deals with finite groups and their structure
The subgroup of a finite group is finite.
lemma (in group0) finite_subgroup:
assumes \( Finite(G) \), \( \text{IsAsubgroup}(H,P) \)
shows \( Finite(H) \) using group0_3_L2, subset_Finite, assmsThe space of cosets is also finite. In particular, quotient groups.
lemma (in group0) finite_cosets:
assumes \( Finite(G) \), \( \text{IsAsubgroup}(H,P) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \)
shows \( Finite(G//r) \)proofAll the cosets are equipollent.
lemma (in group0) cosets_equipoll:
assumes \( \text{IsAsubgroup}(H,P) \), \( g1\in G \), \( g2\in G \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \)
shows \( r\{g1\} \approx r\{g2\} \)proofThe order of a subgroup multiplied by the order of the space of cosets is the order of the group. We only prove the theorem for finite groups.
theorem (in group0) Lagrange:
assumes \( Finite(G) \), \( \text{IsAsubgroup}(H,P) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \)
shows \( |G|=|H| \cdot |G//r| \)proofIn this section we study the minimal subgroup containing a set
Since G is always a group containing the set, we may take the intersection of all subgroups bigger than the set; and hence the result is the subgroup we searched.
definition (in group0)
\( X\subseteq G \Longrightarrow \langle X\rangle _G \equiv \bigcap \{H\in Pow(G).\ X\subseteq H \wedge \text{IsAsubgroup}(H,P)\} \)
Every generated subgroup is a subgroup
theorem (in group0) subgroupGen_is_subgroup:
assumes \( X\subseteq G \)
shows \( \text{IsAsubgroup}(\langle X\rangle _G,P) \)proofThe generated subgroup contains the original set
theorem (in group0) subgroupGen_contains_set:
assumes \( X\subseteq G \)
shows \( X \subseteq \langle X\rangle _G \)proofGiven a subgroup that contains a set, the generated subgroup from that set is smaller than this subgroup
theorem (in group0) subgroupGen_minimal:
assumes \( \text{IsAsubgroup}(H,P) \), \( X\subseteq H \)
shows \( \langle X\rangle _G \subseteq H \)proofassumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( \text{IsAsubgroup}(H,P) \) and \( h\in H \)
shows \( h^{-1}\in H \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( a\in G \)
shows \( a = (a^{-1})^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( \text{IsAsubgroup}(H,P) \) and \( a\in H \), \( b\in H \)
shows \( a\cdot b \in H \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( 1 \in H \)assumes \( H\neq 0 \) and \( H\subseteq G \) and \( H \text{ is closed under } P \) and \( \forall x\in H.\ x^{-1} \in H \)
shows \( \text{IsAsubgroup}(H,P) \)assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\neq b \)
shows \( a\cdot c \neq b\cdot c \) and \( c\cdot a \neq c\cdot b \)assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\neq b \)
shows \( a\cdot c \neq b\cdot c \) and \( c\cdot a \neq c\cdot b \)assumes \( \text{IsAsubgroup}(H,P) \), \( g\in G \)
shows \( \text{IsAsubgroup}(\{g\cdot (h\cdot g^{-1}).\ h\in H\},P) \)assumes \( H\subseteq G \), \( g\in G \)
shows \( H\approx \{g\cdot (h\cdot g^{-1}).\ h\in H\} \)assumes \( \text{IsAsubgroup}(H,P) \), \( \forall g\in G.\ \{g\cdot (h\cdot g^{-1}).\ h\in H\}\subseteq H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)assumes \( \text{IsAsubgroup}(H,P) \), \( \forall M.\ \text{IsAsubgroup}(M,P)\wedge H\approx M \longrightarrow M=H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)assumes \( \text{IsAgroup}(G,P) \) and \( P \text{ is commutative on } G \) and \( \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \), \( \text{QuotientGroupOp}(G,P,H) \text{ is commutative on } (G// \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{refl}(A,r) \) and \( C \in A//r \)
shows \( C\neq 0 \)assumes \( \text{equiv}(A,r) \), \( C \in A//r \) and \( x\in C \)
shows \( r\{x\} = C \)assumes \( \text{equiv}(A,r) \) and \( C \in A//r \) and \( x\in C \)
shows \( x\in A \)assumes \( f:\text{surj}(A,B) \), \( A\preceq Q \), \( Ord(Q) \)
shows \( B\preceq A \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) \in \text{bij}(G,G) \) and \( \text{LeftTranslation}(G,P,g) \in \text{bij}(G,G) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) : G\rightarrow G \) and \( \text{LeftTranslation}(G,P,g) : G\rightarrow G \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( a\in G \)
shows \( \langle a,1 \rangle \in \text{QuotientGroupRel}(G,P,H) \longleftrightarrow a\in H \)assumes \( \text{IsAsubgroup}(H,P) \), \( g1\in G \), \( g2\in G \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \)
shows \( r\{g1\} \approx r\{g2\} \)assumes \( Finite(G) \), \( \text{IsAsubgroup}(H,P) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \)
shows \( Finite(G//r) \)assumes \( \ \lt H>\neq 0 \) and \( \forall H\in \ \lt H>.\ \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAsubgroup}(\bigcap \ \lt H>,P) \)