In this theory file we continue the construction of real numbers started in Real_ZF to a succesful conclusion. We put here those parts of the construction that can not be done in the general settings of abelian groups and require integers.
In this section we define notions and notation needed for the rest of the construction.
We define positive slopes as those that take an infinite number of posititive values on the positive integers (see Int_ZF_2 for properties of positive slopes).
definition
\( PositiveSlopes \equiv \{s \in Slopes.\ \) \( s(PositiveIntegers) \cap PositiveIntegers \notin Fin(int)\} \)
The order on the set of real numbers is constructed by specifying the set of positive reals. This set is defined as the projection of the set of positive slopes.
definition
\( PositiveReals \equiv \{SlopeEquivalenceRel\{s\}.\ s \in PositiveSlopes\} \)
The order relation on real numbers is constructed from the set of positive elements in a standard way (see section "Alternative definitions" in OrderedGroup_ZF.)
definition
\( OrderOnReals \equiv \text{OrderFromPosSet}(RealNumbers,RealAddition,PositiveReals) \)
The next locale extends the locale real0 to define notation specific to the construction of real numbers. The notation follows the one defined in Int_ZF_2.thy. If \(m\) is an integer, then the real number which is the class of the slope \(n\mapsto m\cdot n\) is denoted \( m^R \). For a real number \(a\) notation \(\lfloor a \rfloor\) means the largest integer \(m\) such that the real version of it (that is, \(m^R\)) is not greater than \(a\). For an integer \(m\) and a subset of reals \(S\) the expression \(\Gamma(S,m)\) is defined as \(\max \{\lfloor p^R\cdot x\rfloor : x\in S\}\). This is plays a role in the proof of completeness of real numbers. We also reuse some notation defined in the int0 context, like \( \mathbb{Z} _+ \) (the set of positive integers) and abs\((m)\) ( the absolute value of an integer, and some defined in the int1 context, like the addition ( \( + \)) and composition (\( \circ \) of slopes.
locale real1 = real0 +
defines \( s \sim r \equiv \langle s,r\rangle \in SlopeEquivalenceRel \)
defines \( s + r \equiv SlopeOp1\langle s,r\rangle \)
defines \( s \circ r \equiv SlopeOp2\langle s,r\rangle \)
defines \( \mathcal{S} \equiv \text{AlmostHoms}(int,IntegerAddition) \)
defines \( \mathcal{S} _+ \equiv PositiveSlopes \)
defines \( [f] \equiv SlopeEquivalenceRel\{f\} \)
defines \( - s \equiv \text{GroupInv}(int,IntegerAddition)\circ s \)
defines \( a \leq b \equiv \langle a,b\rangle \in OrderOnReals \)
defines \( a \lt b \equiv a\leq b \wedge a\neq b \)
defines \( \mathbb{R} _+ \equiv \text{PositiveSet}(\mathbb{R} ,RealAddition,OrderOnReals) \)
defines \( m^R \equiv [\{\langle n,IntegerMultiplication\langle m,n\rangle \rangle .\ n \in int\}] \)
defines \( \lfloor a\rfloor \equiv \text{Maximum}(IntegerOrder,\{m \in int.\ m^R \leq a\}) \)
defines \( \Gamma (S,p) \equiv \text{Maximum}(IntegerOrder,\{\lfloor p^R\cdot x\rfloor .\ x\in S\}) \)
defines \( a + b \equiv IntegerAddition\langle a,b\rangle \)
defines \( - a \equiv \text{GroupInv}(int,IntegerAddition)(a) \)
defines \( a - b \equiv a + ( - b) \)
defines \( \mathbb{Z} _+ \equiv \text{PositiveSet}(int,IntegerAddition,IntegerOrder) \)
defines \( m \leq n \equiv \langle m,n\rangle \in IntegerOrder \)
defines \( a\cdot b \equiv IntegerMultiplication\langle a,b\rangle \)
defines \( 0 _Z \equiv \text{ TheNeutralElement}(int,IntegerAddition) \)
defines \( 1 _Z \equiv \text{ TheNeutralElement}(int,IntegerMultiplication) \)
defines \( 2 _Z \equiv 1 _Z + 1 _Z \)
defines \( abs(m) \equiv \text{AbsoluteValue}(int,IntegerAddition,IntegerOrder)(m) \)
defines \( \delta (s,m,n) \equiv s(m + n) - s(m) - s(n) \)
Multiplication of real numbers is defined as a projection of composition of slopes onto the space of equivalence classes of slopes. Thus, the product of the real numbers given as classes of slopes \(s\) and \(r\) is defined as the class of \(s\circ r\). The goal of this section is to show that multiplication defined this way is commutative.
Let's recall a theorem from Int_ZF_2.thy that states that if \(f,g\) are slopes, then \(f\circ g\) is equivalent to \(g\circ f\). Here we conclude from that that the classes of \(f\circ g\) and \(g\circ f\) are the same.
lemma (in real1) Real_ZF_1_1_L2:
assumes A1: \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f\circ g] = [g\circ f] \)proofClasses of slopes are real numbers.
lemma (in real1) Real_ZF_1_1_L3:
assumes A1: \( f \in \mathcal{S} \)
shows \( [f] \in \mathbb{R} \)proofEach real number is a class of a slope.
lemma (in real1) Real_ZF_1_1_L3A:
assumes A1: \( a\in \mathbb{R} \)
shows \( \exists f\in \mathcal{S} .\ a = [f] \)proofIt is useful to have the definition of addition and multiplication in the real1 context notation.
lemma (in real1) Real_ZF_1_1_L4:
assumes A1: \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] + [g] = [f + g] \), \( [f] \cdot [g] = [f\circ g] \)proofThe next lemma is essentially the same as Real_ZF_1_L12, but written in the notation defined in the real1 context. It states that if \(f\) is a slope, then \(-[f] = [-f]\).
lemma (in real1) Real_ZF_1_1_L4A:
assumes \( f \in \mathcal{S} \)
shows \( [ - f] = - [f] \) using assms, Slopes_def, SlopeEquivalenceRel_def, Real_ZF_1_L12Subtracting real numbers correspods to adding the opposite slope.
lemma (in real1) Real_ZF_1_1_L4B:
assumes A1: \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] - [g] = [f + ( - g)] \)proofMultiplication of real numbers is commutative.
theorem (in real1) real_mult_commute:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a\cdot b = b\cdot a \)proofMultiplication is commutative on reals.
lemma real_mult_commutative:
shows \( RealMultiplication \text{ is commutative on } RealNumbers \) using real_mult_commute, IsCommutative_defThe neutral element of multiplication of reals (denoted as \( 1 \) in the real1 context) is the class of identity function on integers. This is really shown in Real_ZF_1_L11, here we only rewrite it in the notation used in the real1 context.
lemma (in real1) real_one_cl_identity:
shows \( [id(int)] = 1 \) using Real_ZF_1_L11If \(f\) is bounded, then its class is the neutral element of additive operation on reals (denoted as \( 0 \) in the real1 context).
lemma (in real1) real_zero_cl_bounded_map:
assumes \( f \in BoundedIntMaps \)
shows \( [f] = 0 \) using assms, Real_ZF_1_L11ATwo real numbers are equal iff the slopes that represent them are almost equal. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation used in the real1 context.
lemma (in real1) Real_ZF_1_1_L5:
assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] = [g] \longleftrightarrow f \sim g \) using assms, Slopes_def, Real_ZF_1_L13If the pair of function belongs to the slope equivalence relation, then their classes are equal. This is convenient, because we don't need to assume that \(f,g\) are slopes (follows from the fact that \(f\sim g\)).
lemma (in real1) Real_ZF_1_1_L5A:
assumes \( f \sim g \)
shows \( [f] = [g] \) using assms, Real_ZF_1_L11, Slopes_def, Real_ZF_1_1_L5Identity function on integers is a slope. This is proven in Real_ZF_1_L13, here we just rewrite it in the notation used in the real1 context.
lemma (in real1) id_on_int_is_slope:
shows \( id(int) \in \mathcal{S} \) using Real_ZF_1_L14, Slopes_defA result from Int_ZF_2.thy: the identity function on integers is not almost equal to any bounded function.
lemma (in real1) Real_ZF_1_1_L7:
assumes A1: \( f \in BoundedIntMaps \)
shows \( \neg (id(int) \sim f) \) using assms, Slopes_def, SlopeOp1_def, BoundedIntMaps_def, SlopeEquivalenceRel_def, BoundedIntMaps_def, Int_ZF_2_3_L12Zero is not one.
lemma (in real1) real_zero_not_one:
shows \( 1 \neq 0 \)proofNegative of a real number is a real number. Property of groups.
lemma (in real1) Real_ZF_1_1_L8:
assumes \( a\in \mathbb{R} \)
shows \( ( - a) \in \mathbb{R} \) using assms, Real_ZF_1_L2, inverse_in_groupAn identity with three real numbers.
lemma (in real1) Real_ZF_1_1_L9:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( a\cdot (b\cdot c) = a\cdot c\cdot b \) using assms, real_mult_commutative, Real_ZF_1_L3, Ring_ZF_2_L4In this section we show that the order relation defined by prescribing the set of positive reals as the projection of the set of positive slopes makes the ring of real numbers into an ordered ring. We also collect the facts about ordered groups and rings that we use in the construction.
Positive slopes are slopes and positive reals are real.
lemma Real_ZF_1_2_L1:
shows \( PositiveSlopes \subseteq Slopes \), \( PositiveReals \subseteq RealNumbers \)proofPositive reals are the same as classes of a positive slopes.
lemma (in real1) Real_ZF_1_2_L2:
shows \( a \in PositiveReals \longleftrightarrow (\exists f\in \mathcal{S} _+.\ a = [f]) \)proofLet's recall from Int_ZF_2.thy that the sum and composition of positive slopes is a positive slope.
lemma (in real1) Real_ZF_1_2_L3:
assumes \( f\in \mathcal{S} _+ \), \( g\in \mathcal{S} _+ \)
shows \( f + g \in \mathcal{S} _+ \), \( f\circ g \in \mathcal{S} _+ \) using assms, Slopes_def, PositiveSlopes_def, PositiveIntegers_def, SlopeOp1_def, sum_of_pos_sls_is_pos_sl, SlopeOp2_def, comp_of_pos_sls_is_pos_slBounded integer maps are not positive slopes.
lemma (in real1) Real_ZF_1_2_L5:
assumes \( f \in BoundedIntMaps \)
shows \( f \notin \mathcal{S} _+ \) using assms, BoundedIntMaps_def, Slopes_def, PositiveSlopes_def, PositiveIntegers_def, Int_ZF_2_3_L1BThe set of positive reals is closed under addition and multiplication. Zero (the neutral element of addition) is not a positive number.
lemma (in real1) Real_ZF_1_2_L6:
shows \( PositiveReals \text{ is closed under } RealAddition \), \( PositiveReals \text{ is closed under } RealMultiplication \), \( 0 \notin PositiveReals \)proofIf a class of a slope \(f\) is not zero, then either \(f\) is a positive slope or \(-f\) is a positive slope. The real proof is in Int_ZF_2.thy.
lemma (in real1) Real_ZF_1_2_L7:
assumes A1: \( f \in \mathcal{S} \) and A2: \( [f] \neq 0 \)
shows \( (f \in \mathcal{S} _+) \text{ Xor } (( - f) \in \mathcal{S} _+) \) using assms, Slopes_def, SlopeEquivalenceRel_def, BoundedIntMaps_def, PositiveSlopes_def, PositiveIntegers_def, Real_ZF_1_L10, Int_ZF_2_3_L8The next lemma rephrases Int_ZF_2_3_L10 in the notation used in real1 context.
lemma (in real1) Real_ZF_1_2_L8:
assumes A1: \( f \in \mathcal{S} \), \( g \in \mathcal{S} \) and A2: \( (f \in \mathcal{S} _+) \text{ Xor } (g \in \mathcal{S} _+) \)
shows \( ([f] \in PositiveReals) \text{ Xor } ([g] \in PositiveReals) \) using assms, PositiveReals_def, SlopeEquivalenceRel_def, Slopes_def, SlopeOp1_def, BoundedIntMaps_def, PositiveSlopes_def, PositiveIntegers_def, Int_ZF_2_3_L10The trichotomy law for the (potential) order on reals: if \(a\neq 0\), then either \(a\) is positive or \(-a\) is potitive.
lemma (in real1) Real_ZF_1_2_L9:
assumes A1: \( a\in \mathbb{R} \) and A2: \( a\neq 0 \)
shows \( (a \in PositiveReals) \text{ Xor } (( - a) \in PositiveReals) \)proofFinally we are ready to prove that real numbers form an ordered ring with no zero divisors.
theorem reals_are_ord_ring:
shows \( \text{IsAnOrdRing}(RealNumbers,RealAddition,RealMultiplication,OrderOnReals) \), \( OrderOnReals \text{ is total on } RealNumbers \), \( \text{PositiveSet}(RealNumbers,RealAddition,OrderOnReals) = PositiveReals \), \( \text{HasNoZeroDivs}(RealNumbers,RealAddition,RealMultiplication) \)proofAll theorems proven in the ring1 (about ordered rings), group3 (about ordered groups) and group1 (about groups) contexts are valid as applied to ordered real numbers with addition and (real) order.
lemma Real_ZF_1_2_L10:
shows \( ring1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals) \), \( \text{IsAnOrdGroup}(RealNumbers,RealAddition,OrderOnReals) \), \( group3(RealNumbers,RealAddition,OrderOnReals) \), \( OrderOnReals \text{ is total on } RealNumbers \)proofIf \(a=b\) or \(b-a\) is positive, then \(a\) is less or equal \(b\).
lemma (in real1) Real_ZF_1_2_L11:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and A3: \( a=b \vee b - a \in PositiveReals \)
shows \( a\leq b \) using assms, reals_are_ord_ring, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L30A sufficient condition for two classes to be in the real order.
lemma (in real1) Real_ZF_1_2_L12:
assumes A1: \( f \in \mathcal{S} \), \( g \in \mathcal{S} \) and A2: \( f\sim g \vee (g + ( - f)) \in \mathcal{S} _+ \)
shows \( [f] \leq [g] \)proofTaking negative on both sides reverses the inequality, a case with an inverse on one side. Property of ordered groups.
lemma (in real1) Real_ZF_1_2_L13:
assumes A1: \( a\in \mathbb{R} \) and A2: \( ( - a) \leq b \)
shows \( ( - b) \leq a \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L5AGReal order is antisymmetric.
lemma (in real1) real_ord_antisym:
assumes A1: \( a\leq b \), \( b\leq a \)
shows \( a=b \)proofReal order is transitive.
lemma (in real1) real_ord_transitive:
assumes A1: \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)proofWe can multiply both sides of an inequality by a nonnegative real number.
lemma (in real1) Real_ZF_1_2_L14:
assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \) using assms, Real_ZF_1_2_L10, OrdRing_ZF_1_L9A special case of Real_ZF_1_2_L14: we can multiply an inequality by a real number.
lemma (in real1) Real_ZF_1_2_L14A:
assumes A1: \( a\leq b \) and A2: \( c\in \mathbb{R} _+ \)
shows \( c\cdot a \leq c\cdot b \) using assms, Real_ZF_1_2_L10, OrdRing_ZF_1_L9AIn the real1 context notation \(a\leq b\) implies that \(a\) and \(b\) are real numbers.
lemma (in real1) Real_ZF_1_2_L15:
assumes \( a\leq b \)
shows \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L4\(a\leq b\) implies that \(0 \leq b -a\).
lemma (in real1) Real_ZF_1_2_L16:
assumes \( a\leq b \)
shows \( 0 \leq b - a \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L12AA sum of nonnegative elements is nonnegative.
lemma (in real1) Real_ZF_1_2_L17:
assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a + b \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L12We can add sides of two inequalities
lemma (in real1) Real_ZF_1_2_L18:
assumes \( a\leq b \), \( c\leq d \)
shows \( a + c \leq b + d \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L5BThe order on real is reflexive.
lemma (in real1) real_ord_refl:
assumes \( a\in \mathbb{R} \)
shows \( a\leq a \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L3We can add a real number to both sides of an inequality.
lemma (in real1) add_num_to_ineq:
assumes \( a\leq b \) and \( c\in \mathbb{R} \)
shows \( a + c \leq b + c \) using assms, Real_ZF_1_2_L10, IsAnOrdGroup_defWe can put a number on the other side of an inequality, changing its sign.
lemma (in real1) Real_ZF_1_2_L19:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( c \leq a + b \)
shows \( c - b \leq a \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L9CWhat happens when one real number is not greater or equal than another?
lemma (in real1) Real_ZF_1_2_L20:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( \neg (a\leq b) \)
shows \( b \lt a \)proofWe can put a number on the other side of an inequality, changing its sign, version with a minus.
lemma (in real1) Real_ZF_1_2_L21:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( c \leq a - b \)
shows \( c + b \leq a \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L5JThe order on reals is a relation on reals.
lemma (in real1) Real_ZF_1_2_L22:
shows \( OrderOnReals \subseteq \mathbb{R} \times \mathbb{R} \) using Real_ZF_1_2_L10, IsAnOrdGroup_defA set that is bounded above in the sense defined by order on reals is a subset of real numbers.
lemma (in real1) Real_ZF_1_2_L23:
assumes A1: \( \text{IsBoundedAbove}(A,OrderOnReals) \)
shows \( A \subseteq \mathbb{R} \) using A1, Real_ZF_1_2_L22, Order_ZF_3_L1AProperties of the maximum of three real numbers.
lemma (in real1) Real_ZF_1_2_L24:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( \text{Maximum}(OrderOnReals,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Maximum}(OrderOnReals,\{a,b,c\}) \in \mathbb{R} \), \( a \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \), \( b \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \), \( c \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \)proofA form of transitivity for the order on reals.
lemma (in real1) real_strict_ord_transit:
assumes A1: \( a\leq b \) and A2: \( b \lt c \)
shows \( a \lt c \)proofWe can multiply a right hand side of an inequality between positive real numbers by a number that is greater than one.
lemma (in real1) Real_ZF_1_2_L25:
assumes \( b \in \mathbb{R} _+ \) and \( a\leq b \) and \( 1 \lt c \)
shows \( a \lt b\cdot c \) using assms, reals_are_ord_ring, Real_ZF_1_2_L10, OrdRing_ZF_3_L17We can move a real number to the other side of a strict inequality, changing its sign.
lemma (in real1) Real_ZF_1_2_L26:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( a - b \lt c \)
shows \( a \lt c + b \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_1_L12BReal order is translation invariant.
lemma (in real1) real_ord_transl_inv:
assumes \( a\leq b \) and \( c\in \mathbb{R} \)
shows \( c + a \leq c + b \) using assms, Real_ZF_1_2_L10, IsAnOrdGroup_defIt is convenient to have the transitivity of the order on integers in the notation specific to real1 context. This may be confusing for the presentation readers: even though \( \leq \) and \( \leq \) are printed in the same way, they are different symbols in the source. In the real1 context the former denotes inequality between integers, and the latter denotes inequality between real numbers (classes of slopes). The next lemma is about transitivity of the order relation on integers.
lemma (in real1) int_order_transitive:
assumes A1: \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)proofA property of nonempty subsets of real numbers that don't have a maximum: for any element we can find one that is (strictly) greater.
lemma (in real1) Real_ZF_1_2_L27:
assumes \( A\subseteq \mathbb{R} \) and \( \neg \text{HasAmaximum}(OrderOnReals,A) \) and \( x\in A \)
shows \( \exists y\in A.\ x \lt y \) using assms, Real_ZF_1_2_L10, OrderedGroup_ZF_2_L2BThe next lemma shows what happens when one real number is not greater or equal than another.
lemma (in real1) Real_ZF_1_2_L28:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( \neg (a\leq b) \)
shows \( b \lt a \)proofIf a real number is less than another, then the second one can not be less or equal that the first.
lemma (in real1) Real_ZF_1_2_L29:
assumes \( a \lt b \)
shows \( \neg (b\leq a) \)proofIn this section we tackle the issue of existence of (multiplicative) inverses of real numbers and show that real numbers form an ordered field. We also restate here some facts specific to ordered fields that we need for the construction. The actual proofs of most of these facts can be found in Field_ZF.thy and OrderedField_ZF.thy
We rewrite the theorem from Int_ZF_2.thy that shows that for every positive slope we can find one that is almost equal and has an inverse.
lemma (in real1) pos_slopes_have_inv:
assumes \( f \in \mathcal{S} _+ \)
shows \( \exists g\in \mathcal{S} .\ f\sim g \wedge (\exists h\in \mathcal{S} .\ g\circ h \sim id(int)) \) using assms, PositiveSlopes_def, Slopes_def, PositiveIntegers_def, pos_slope_has_inv, SlopeOp1_def, SlopeOp2_def, BoundedIntMaps_def, SlopeEquivalenceRel_defThe set of real numbers we are constructing is an ordered field.
theorem (in real1) reals_are_ord_field:
shows \( \text{IsAnOrdField}(RealNumbers,RealAddition,RealMultiplication,OrderOnReals) \)proofReals form a field.
lemma reals_are_field:
shows \( \text{IsAfield}(RealNumbers,RealAddition,RealMultiplication) \) using reals_are_ord_field, OrdField_ZF_1_L1ATheorem proven in field0 and field1 contexts are valid as applied to real numbers.
lemma field_cntxts_ok:
shows \( field0(RealNumbers,RealAddition,RealMultiplication) \), \( field1(RealNumbers,RealAddition,RealMultiplication,OrderOnReals) \) using reals_are_field, reals_are_ord_field, field_field0, OrdField_ZF_1_L2If \(a\) is positive, then \(a^{-1}\) is also positive.
lemma (in real1) Real_ZF_1_3_L1:
assumes \( a \in \mathbb{R} _+ \)
shows \( a^{-1} \in \mathbb{R} _+ \), \( a^{-1} \in \mathbb{R} \) using assms, field_cntxts_ok, OrdField_ZF_1_L8, PositiveSet_defA technical fact about multiplying strict inequality by the inverse of one of the sides.
lemma (in real1) Real_ZF_1_3_L2:
assumes \( a \in \mathbb{R} _+ \) and \( a^{-1} \lt b \)
shows \( 1 \lt b\cdot a \) using assms, field_cntxts_ok, OrdField_ZF_2_L2If \(a\) is smaller than \(b\), then \((b-a)^{-1}\) is positive.
lemma (in real1) Real_ZF_1_3_L3:
assumes \( a \lt b \)
shows \( (b - a)^{-1} \in \mathbb{R} _+ \) using assms, field_cntxts_ok, OrdField_ZF_1_L9We can put a positive factor on the other side of a strict inequality, changing it to its inverse.
lemma (in real1) Real_ZF_1_3_L4:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} _+ \) and A2: \( a\cdot b \lt c \)
shows \( a \lt c\cdot b^{-1} \) using assms, field_cntxts_ok, OrdField_ZF_2_L6We can put a positive factor on the other side of a strict inequality, changing it to its inverse, version with the product initially on the right hand side.
lemma (in real1) Real_ZF_1_3_L4A:
assumes A1: \( b\in \mathbb{R} \), \( c\in \mathbb{R} _+ \) and A2: \( a \lt b\cdot c \)
shows \( a\cdot c^{-1} \lt b \) using assms, field_cntxts_ok, OrdField_ZF_2_L6AWe can put a positive factor on the other side of an inequality, changing it to its inverse, version with the product initially on the right hand side.
lemma (in real1) Real_ZF_1_3_L4B:
assumes A1: \( b\in \mathbb{R} \), \( c\in \mathbb{R} _+ \) and A2: \( a \leq b\cdot c \)
shows \( a\cdot c^{-1} \leq b \) using assms, field_cntxts_ok, OrdField_ZF_2_L5AWe can put a positive factor on the other side of an inequality, changing it to its inverse, version with the product initially on the left hand side.
lemma (in real1) Real_ZF_1_3_L4C:
assumes A1: \( a\in \mathbb{R} \), \( b\in \mathbb{R} _+ \) and A2: \( a\cdot b \leq c \)
shows \( a \leq c\cdot b^{-1} \) using assms, field_cntxts_ok, OrdField_ZF_2_L5A technical lemma about solving a strict inequality with three real numbers and inverse of a difference.
lemma (in real1) Real_ZF_1_3_L5:
assumes \( a \lt b \) and \( (b - a)^{-1} \lt c \)
shows \( 1 + a\cdot c \lt b\cdot c \) using assms, field_cntxts_ok, OrdField_ZF_2_L9We can multiply an inequality by the inverse of a positive number.
lemma (in real1) Real_ZF_1_3_L6:
assumes \( a\leq b \) and \( c\in \mathbb{R} _+ \)
shows \( a\cdot c^{-1} \leq b\cdot c^{-1} \) using assms, field_cntxts_ok, OrdField_ZF_2_L3We can multiply a strict inequality by a positive number or its inverse.
lemma (in real1) Real_ZF_1_3_L7:
assumes \( a \lt b \) and \( c\in \mathbb{R} _+ \)
shows \( a\cdot c \lt b\cdot c \), \( c\cdot a \lt c\cdot b \), \( a\cdot c^{-1} \lt b\cdot c^{-1} \) using assms, field_cntxts_ok, OrdField_ZF_2_L4An identity with three real numbers, inverse and cancelling.
lemma (in real1) Real_ZF_1_3_L8:
assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( b\neq 0 \), \( c\in \mathbb{R} \)
shows \( a\cdot b\cdot (c\cdot b^{-1}) = a\cdot c \) using assms, field_cntxts_ok, Field_ZF_2_L6This goal of this section is to show that the order on real numbers is complete, that is every subset of reals that is bounded above has a smallest upper bound.
If \(m\) is an integer, then \( m^R \) is a real number. Recall that in real1 context \( m^R \) denotes the class of the slope \(n\mapsto m\cdot n\).
lemma (in real1) real_int_is_real:
assumes \( m \in int \)
shows \( m^R \in \mathbb{R} \) using assms, Int_ZF_2_5_L1, Real_ZF_1_1_L3The negative of the real embedding of an integer is the embedding of the negative of the integer.
lemma (in real1) Real_ZF_1_4_L1:
assumes \( m \in int \)
shows \( ( - m)^R = - (m^R) \) using assms, Int_ZF_2_5_L3, Int_ZF_2_5_L1, Real_ZF_1_1_L4AThe embedding of sum of integers is the sum of embeddings.
lemma (in real1) Real_ZF_1_4_L1A:
assumes \( m \in int \), \( k \in int \)
shows \( m^R + k^R = ((m + k)^R) \) using assms, Int_ZF_2_5_L1, SlopeOp1_def, Int_ZF_2_5_L3A, Real_ZF_1_1_L4The embedding of a difference of integers is the difference of embeddings.
lemma (in real1) Real_ZF_1_4_L1B:
assumes A1: \( m \in int \), \( k \in int \)
shows \( m^R - k^R = (m - k)^R \)proofThe embedding of the product of integers is the product of embeddings.
lemma (in real1) Real_ZF_1_4_L1C:
assumes \( m \in int \), \( k \in int \)
shows \( m^R \cdot k^R = (m\cdot k)^R \) using assms, Int_ZF_2_5_L1, SlopeOp2_def, Int_ZF_2_5_L3B, Real_ZF_1_1_L4For any real numbers there is an integer whose real version is greater or equal.
lemma (in real1) Real_ZF_1_4_L2:
assumes A1: \( a\in \mathbb{R} \)
shows \( \exists m\in int.\ a \leq m^R \)proofFor any real numbers there is an integer whose real version (embedding) is less or equal.
lemma (in real1) Real_ZF_1_4_L3:
assumes A1: \( a\in \mathbb{R} \)
shows \( \{m \in int.\ m^R \leq a\} \neq 0 \)proofEmbeddings of two integers are equal only if the integers are equal.
lemma (in real1) Real_ZF_1_4_L4:
assumes A1: \( m \in int \), \( k \in int \) and A2: \( m^R = k^R \)
shows \( m=k \)proofThe embedding of integers preserves the order.
lemma (in real1) Real_ZF_1_4_L5:
assumes A1: \( m\leq k \)
shows \( m^R \leq k^R \)proofThe embedding of integers preserves the strict order.
lemma (in real1) Real_ZF_1_4_L5A:
assumes A1: \( m\leq k \), \( m\neq k \)
shows \( m^R \lt k^R \)proofFor any real number there is a positive integer whose real version is (strictly) greater. This is Lemma 14 i) in \cite{Arthan2004}.
lemma (in real1) Arthan_Lemma14i:
assumes A1: \( a\in \mathbb{R} \)
shows \( \exists n\in \mathbb{Z} _+.\ a \lt n^R \)proofIf one embedding is less or equal than another, then the integers are also less or equal.
lemma (in real1) Real_ZF_1_4_L6:
assumes A1: \( k \in int \), \( m \in int \) and A2: \( m^R \leq k^R \)
shows \( m\leq k \)proofThe floor function is well defined and has expected properties.
lemma (in real1) Real_ZF_1_4_L7:
assumes A1: \( a\in \mathbb{R} \)
shows \( \text{IsBoundedAbove}(\{m \in int.\ m^R \leq a\},IntegerOrder) \), \( \{m \in int.\ m^R \leq a\} \neq 0 \), \( \lfloor a\rfloor \in int \), \( \lfloor a\rfloor ^R \leq a \)proofEvery integer whose embedding is less or equal a real number \(a\) is less or equal than the floor of \(a\).
lemma (in real1) Real_ZF_1_4_L8:
assumes A1: \( m \in int \) and A2: \( m^R \leq a \)
shows \( m \leq \lfloor a\rfloor \)proofInteger zero and one embed as real zero and one.
lemma (in real1) int_0_1_are_real_zero_one:
shows \( 0 _Z^R = 0 \), \( 1 _Z^R = 1 \) using Int_ZF_2_5_L7, BoundedIntMaps_def, real_one_cl_identity, real_zero_cl_bounded_mapInteger two embeds as the real two.
lemma (in real1) int_two_is_real_two:
shows \( 2 _Z^R = 2 \)proofA positive integer embeds as a positive (hence nonnegative) real.
lemma (in real1) int_pos_is_real_pos:
assumes A1: \( p\in \mathbb{Z} _+ \)
shows \( p^R \in \mathbb{R} \), \( 0 \leq p^R \), \( p^R \in \mathbb{R} _+ \)proofThe ordered field of reals we are constructing is archimedean, i.e., if \(x,y\) are its elements with \(y\) positive, then there is a positive integer \(M\) such that \(x\) is smaller than \(M^R y\). This is Lemma 14 ii) in \cite{Arthan2004}.
lemma (in real1) Arthan_Lemma14ii:
assumes A1: \( x\in \mathbb{R} \), \( y \in \mathbb{R} _+ \)
shows \( \exists M\in \mathbb{Z} _+.\ x \lt M^R\cdot y \)proofTaking the floor function preserves the order.
lemma (in real1) Real_ZF_1_4_L9:
assumes A1: \( a\leq b \)
shows \( \lfloor a\rfloor \leq \lfloor b\rfloor \)proofIf \(S\) is bounded above and \(p\) is a positive intereger, then \(\Gamma(S,p)\) is well defined.
lemma (in real1) Real_ZF_1_4_L10:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( p\in \mathbb{Z} _+ \)
shows \( \text{IsBoundedAbove}(\{\lfloor p^R\cdot x\rfloor .\ x\in S\},IntegerOrder) \), \( \Gamma (S,p) \in \{\lfloor p^R\cdot x\rfloor .\ x\in S\} \), \( \Gamma (S,p) \in int \)proofIf \(p\) is a positive integer, then for all \(s\in S\) the floor of \(p\cdot x\) is not greater that \(\Gamma(S,p)\).
lemma (in real1) Real_ZF_1_4_L11:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \) and A2: \( x\in S \) and A3: \( p\in \mathbb{Z} _+ \)
shows \( \lfloor p^R\cdot x\rfloor \leq \Gamma (S,p) \)proofThe candidate for supremum is an integer mapping with values given by \(\Gamma\).
lemma (in real1) Real_ZF_1_4_L12:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( g = \{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\} \)
shows \( g : \mathbb{Z} _+\rightarrow int \), \( \forall n\in \mathbb{Z} _+.\ g(n) = \Gamma (S,n) \)proofEvery integer is equal to the floor of its embedding.
lemma (in real1) Real_ZF_1_4_L14:
assumes A1: \( m \in int \)
shows \( \lfloor m^R\rfloor = m \)proofFloor of (real) zero is (integer) zero.
lemma (in real1) floor_01_is_zero_one:
shows \( \lfloor 0 \rfloor = 0 _Z \), \( \lfloor 1 \rfloor = 1 _Z \)proofFloor of (real) two is (integer) two.
lemma (in real1) floor_2_is_two:
shows \( \lfloor 2 \rfloor = 2 _Z \)proofFloor of a product of embeddings of integers is equal to the product of integers.
lemma (in real1) Real_ZF_1_4_L14A:
assumes A1: \( m \in int \), \( k \in int \)
shows \( \lfloor m^R\cdot k^R\rfloor = m\cdot k \)proofFloor of the sum of a number and the embedding of an integer is the floor of the number plus the integer.
lemma (in real1) Real_ZF_1_4_L15:
assumes A1: \( x\in \mathbb{R} \) and A2: \( p \in int \)
shows \( \lfloor x + p^R\rfloor = \lfloor x\rfloor + p \)proofFloor of the difference of a number and the embedding of an integer is the floor of the number minus the integer.
lemma (in real1) Real_ZF_1_4_L16:
assumes A1: \( x\in \mathbb{R} \) and A2: \( p \in int \)
shows \( \lfloor x - p^R\rfloor = \lfloor x\rfloor - p \)proofThe floor of sum of embeddings is the sum of the integers.
lemma (in real1) Real_ZF_1_4_L17:
assumes \( m \in int \), \( n \in int \)
shows \( \lfloor (m^R) + n^R\rfloor = m + n \) using assms, real_int_is_real, Real_ZF_1_4_L15, Real_ZF_1_4_L14A lemma about adding one to floor.
lemma (in real1) Real_ZF_1_4_L17A:
assumes A1: \( a\in \mathbb{R} \)
shows \( 1 + \lfloor a\rfloor ^R = (1 _Z + \lfloor a\rfloor )^R \)proofThe difference between the a number and the embedding of its floor is (strictly) less than one.
lemma (in real1) Real_ZF_1_4_L17B:
assumes A1: \( a\in \mathbb{R} \)
shows \( a - \lfloor a\rfloor ^R \lt 1 \), \( a \lt (1 _Z + \lfloor a\rfloor )^R \)proofThe next lemma corresponds to Lemma 14 iii) in \cite{Arthan2004}. It says that we can find a rational number between any two different real numbers.
lemma (in real1) Arthan_Lemma14iii:
assumes A1: \( x \lt y \)
shows \( \exists M\in int.\ \exists N\in \mathbb{Z} _+.\ x\cdot N^R \lt M^R \wedge M^R \lt y\cdot N^R \)proofSome estimates for the homomorphism difference of the floor function.
lemma (in real1) Real_ZF_1_4_L18:
assumes A1: \( x\in \mathbb{R} \), \( y\in \mathbb{R} \)
shows \( abs(\lfloor x + y\rfloor - \lfloor x\rfloor - \lfloor y\rfloor ) \leq 2 _Z \)proofSuppose \(S\neq \emptyset\) is bounded above and \(\Gamma(S,m) =\lfloor m^R\cdot x\rfloor\) for some positive integer \(m\) and \(x\in S\). Then if \(y\in S, x\leq y\) we also have \(\Gamma(S,m) =\lfloor m^R\cdot y\rfloor\).
lemma (in real1) Real_ZF_1_4_L20:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( n\in \mathbb{Z} _+ \), \( x\in S \) and A3: \( \Gamma (S,n) = \lfloor n^R\cdot x\rfloor \) and A4: \( y\in S \), \( x\leq y \)
shows \( \Gamma (S,n) = \lfloor n^R\cdot y\rfloor \)proofThe homomorphism difference of \(n\mapsto \Gamma(S,n)\) is bounded by \(2\) on positive integers.
lemma (in real1) Real_ZF_1_4_L21:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( m\in \mathbb{Z} _+ \), \( n\in \mathbb{Z} _+ \)
shows \( abs(\Gamma (S,m + n) - \Gamma (S,m) - \Gamma (S,n)) \leq 2 _Z \)proofThe next lemma provides sufficient condition for an odd function to be an almost homomorphism. It says for odd functions we only need to check that the homomorphism difference (denoted \( \delta \) in the real1 context) is bounded on positive integers. This is really proven in Int_ZF_2.thy, but we restate it here for convenience. Recall from Group_ZF_3.thy that OddExtension of a function defined on the set of positive elements (of an ordered group) is the only odd function that is equal to the given one when restricted to positive elements.
lemma (in real1) Real_ZF_1_4_L21A:
assumes A1: \( f:\mathbb{Z} _+\rightarrow int \), \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \text{OddExtension}(int,IntegerAddition,IntegerOrder,f) \in \mathcal{S} \) using A1, Int_ZF_2_1_L24The candidate for (a representant of) the supremum of a nonempty bounded above set is a slope.
lemma (in real1) Real_ZF_1_4_L22:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( g = \{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\} \)
shows \( \text{OddExtension}(int,IntegerAddition,IntegerOrder,g) \in \mathcal{S} \)proofA technical lemma used in the proof that all elements of \(S\) are less or equal than the candidate for supremum of \(S\).
lemma (in real1) Real_ZF_1_4_L23:
assumes A1: \( f \in \mathcal{S} \) and A2: \( N \in int \), \( M \in int \) and A3: \( \forall n\in \mathbb{Z} _+.\ M\cdot n \leq f(N\cdot n) \)
shows \( M^R \leq [f]\cdot (N^R) \)proofA technical lemma aimed used in the proof the candidate for supremum of \(S\) is less or equal than any upper bound for \(S\).
lemma (in real1) Real_ZF_1_4_L23A:
assumes A1: \( f \in \mathcal{S} \) and A2: \( N \in int \), \( M \in int \) and A3: \( \forall n\in \mathbb{Z} _+.\ f(N\cdot n) \leq M\cdot n \)
shows \( [f]\cdot (N^R) \leq M^R \)proofThe essential condition to claim that the candidate for supremum of \(S\) is greater or equal than all elements of \(S\).
lemma (in real1) Real_ZF_1_4_L24:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \) and A2: \( x \lt y \), \( y\in S \) and A4: \( N \in \mathbb{Z} _+ \), \( M \in int \) and A5: \( M^R \lt y\cdot N^R \) and A6: \( p \in \mathbb{Z} _+ \)
shows \( p\cdot M \leq \Gamma (S,p\cdot N) \)proofAn obvious fact about odd extension of a function \(p\mapsto \Gamma(s,p)\) that is used a couple of times in proofs.
lemma (in real1) Real_ZF_1_4_L24A:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( p \in \mathbb{Z} _+ \) and A3: \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( h(p) = \Gamma (S,p) \)proofThe candidate for the supremum of \(S\) is not smaller than any element of \(S\).
lemma (in real1) Real_ZF_1_4_L25:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \) and A2: \( \neg \text{HasAmaximum}(OrderOnReals,S) \) and A3: \( x\in S \) and A4: \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( x \leq [h] \)proofThe essential condition to claim that the candidate for supremum of \(S\) is less or equal than any upper bound of \(S\).
lemma (in real1) Real_ZF_1_4_L26:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \) and A2: \( x\leq y \), \( x\in S \) and A4: \( N \in \mathbb{Z} _+ \), \( M \in int \) and A5: \( y\cdot N^R \lt M^R \) and A6: \( p \in \mathbb{Z} _+ \)
shows \( \lfloor (N\cdot p)^R\cdot x\rfloor \leq M\cdot p \)proofA piece of the proof of the fact that the candidate for the supremum of \(S\) is not greater than any upper bound of \(S\), done separately for clarity (of mind).
lemma (in real1) Real_ZF_1_4_L27:
assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \) and \( p \in \mathbb{Z} _+ \)
shows \( \exists x\in S.\ h(p) = \lfloor p^R\cdot x\rfloor \) using assms, Real_ZF_1_4_L10, Real_ZF_1_4_L24AThe candidate for the supremum of \(S\) is not greater than any upper bound of \(S\).
lemma (in real1) Real_ZF_1_4_L28:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and A2: \( \forall x\in S.\ x\leq y \) and A3: \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( [h] \leq y \)proofNow we can prove that every nonempty subset of reals that is bounded above has a supremum. Proof by considering two cases: when the set has a maximum and when it does not.
lemma (in real1) real_order_complete:
assumes A1: \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \)
shows \( \text{HasAminimum}(OrderOnReals,\bigcap a\in S.\ OrderOnReals\{a\}) \)proofFinally, we are ready to formulate the main result: that the construction of real numbers from the additive group of integers results in a complete ordered field. This theorem completes the construction. It was fun.
theorem eudoxus_reals_are_reals:
shows \( \text{IsAmodelOfReals}(RealNumbers,RealAddition,RealMultiplication,OrderOnReals) \) using reals_are_ord_field, real_order_complete, IsComplete_def, IsAmodelOfReals_defassumes \( f\in \mathcal{S} \), \( g\in \mathcal{S} \)
shows \( f\circ g \sim g\circ f \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)assumes \( s \in Slopes \) and \( r = \text{QuotientGroupRel}(Slopes,SlopeOp1,BoundedIntMaps) \)
shows \( r\{ \text{GroupInv}(int,IntegerAddition)\circ s\} = - (r\{s\}) \)assumes \( s\in \mathcal{S} \)
shows \( - s \in \mathcal{S} \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] + [g] = [f + g] \), \( [f] \cdot [g] = [f\circ g] \)assumes \( f \in \mathcal{S} \)
shows \( [ - f] = - [f] \)assumes \( a\in \mathbb{R} \)
shows \( \exists f\in \mathcal{S} .\ a = [f] \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f\circ g] = [g\circ f] \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a\cdot b = b\cdot a \)assumes \( s \in BoundedIntMaps \)
shows \( SlopeEquivalenceRel\{s\} = 0 \)assumes \( s \in Slopes \), \( p \in Slopes \) and \( r = SlopeEquivalenceRel \)
shows \( r\{s\} = r\{p\} \longleftrightarrow \langle s,p\rangle \in r \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] = [g] \longleftrightarrow f \sim g \)assumes \( f \in \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} ) \)
shows \( \neg (id(\mathbb{Z} ) \sim f) \)assumes \( s \in Slopes \)
shows \( SlopeEquivalenceRel\{s\} = 0 \longleftrightarrow s \in BoundedIntMaps \)assumes \( f \in BoundedIntMaps \)
shows \( \neg (id(int) \sim f) \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( M \text{ is commutative on } R \) and \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b\cdot c) = a\cdot c\cdot b \) and \( a\cdot b\cdot c = a\cdot c\cdot b \)assumes \( Y = \{x\in X.\ b(x)\} \)
shows \( Y \subseteq X \)assumes \( A\subseteq X \)
shows \( \{r\{x\}.\ x\in A\} \subseteq X//r \)assumes \( f \in \mathcal{S} _+ \), \( g \in \mathcal{S} _+ \)
shows \( f + g \in \mathcal{S} _+ \)assumes \( f \in \mathcal{S} _+ \), \( g \in \mathcal{S} _+ \)
shows \( f\circ g \in \mathcal{S} _+ \)assumes \( f \in \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} ) \)
shows \( f\in \mathcal{S} \), \( f \notin \mathcal{S} _+ \)assumes \( f\in \mathcal{S} _+ \), \( g\in \mathcal{S} _+ \)
shows \( f + g \in \mathcal{S} _+ \), \( f\circ g \in \mathcal{S} _+ \)assumes \( f \in BoundedIntMaps \)
shows \( f \notin \mathcal{S} _+ \)assumes \( f\in \mathcal{S} \) and \( f \notin \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} ) \)
shows \( (f \in \mathcal{S} _+) \text{ Xor } (( - f) \in \mathcal{S} _+) \)assumes \( f\in \mathcal{S} \), \( g\in \mathcal{S} \) and \( R = \{AlEqRel\{s\}.\ s\in \mathcal{S} _+\} \) and \( (f\in \mathcal{S} _+) \text{ Xor } (g\in \mathcal{S} _+) \)
shows \( (AlEqRel\{f\} \in R) \text{ Xor } (AlEqRel\{g\} \in R) \)assumes \( f \in \mathcal{S} \) and \( [f] \neq 0 \)
shows \( (f \in \mathcal{S} _+) \text{ Xor } (( - f) \in \mathcal{S} _+) \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \) and \( (f \in \mathcal{S} _+) \text{ Xor } (g \in \mathcal{S} _+) \)
shows \( ([f] \in PositiveReals) \text{ Xor } ([g] \in PositiveReals) \)assumes \( a\in \mathbb{R} \) and \( a\neq 0 \)
shows \( (a \in PositiveReals) \text{ Xor } (( - a) \in PositiveReals) \)assumes \( M \text{ is commutative on } R \) and \( P\subseteq R \), \( P \text{ is closed under } A \), \( 0 \notin P \) and \( \forall a\in R.\ a\neq 0 \longrightarrow (a\in P) \text{ Xor } (( - a) \in P) \) and \( P \text{ is closed under } M \) and \( r = \text{OrderFromPosSet}(R,A,P) \)
shows \( \text{IsAnOrdGroup}(R,A,r) \), \( \text{IsAnOrdRing}(R,A,M,r) \), \( r \text{ is total on } R \), \( \text{PositiveSet}(R,A,r) = P \), \( \text{Nonnegative}(R,A,r) = P \cup \{ 0 \} \), \( \text{HasNoZeroDivs}(R,A,M) \)assumes \( \text{IsAnOrdRing}(R,A,M,r) \)
shows \( ring1(R,A,M,r) \)assumes \( a\in G \), \( b\in G \) and \( a=b \vee b\cdot a^{-1} \in G_+ \)
shows \( a\leq b \)assumes \( f \sim g \)
shows \( [f] = [g] \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \)
shows \( [f] - [g] = [f + ( - g)] \)assumes \( f \in \mathcal{S} \)
shows \( [f] \in \mathbb{R} \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( a=b \vee b - a \in PositiveReals \)
shows \( a\leq b \)assumes \( a \in G \) and \( a^{-1}\leq b \)
shows \( b^{-1} \leq a \)assumes \( a\leq b \), \( b\leq a \)
shows \( a=b \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\leq b \) and \( c\in R_+ \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \)assumes \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)assumes \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)assumes \( g\in G \)
shows \( g\leq g \)assumes \( a\in G \), \( b\in G \) and \( c\leq a\cdot b \)
shows \( c\cdot b^{-1} \leq a \), \( a^{-1}\cdot c \leq b \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \neg (a\leq b) \)
shows \( b \leq a \), \( a^{-1} \leq b^{-1} \), \( a\neq b \), \( b \lt a \)assumes \( a\in G \), \( b\in G \) and \( c \leq a\cdot b^{-1} \)
shows \( c\cdot b \leq a \)assumes \( r \subseteq X\times X \) and \( \text{IsBoundedAbove}(A,r) \)
shows \( A\subseteq X \)assumes \( r \text{ is total on } G \)
shows \( \text{IsLinOrder}(G,r) \)assumes \( \text{IsLinOrder}(X,r) \) and \( a\in X \), \( b\in X \), \( c\in X \)
shows \( \text{Maximum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Minimum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Maximum}(r,\{a,b,c\}) \in X \), \( \text{Minimum}(r,\{a,b,c\}) \in X \), \( \langle a, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle b, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle c, \text{Maximum}(r,\{a,b,c\})\rangle \in r \)assumes \( a\leq b \) and \( b \lt c \)
shows \( a \lt c \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( b\in R_+ \) and \( a\leq b \) and \( 1 \lt c \)
shows \( a \lt b\cdot c \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} \lt c \)
shows \( a \lt c\cdot b \)assumes \( \langle m,n\rangle \in IntegerOrder \), \( \langle n,k\rangle \in IntegerOrder \)
shows \( \langle m,k\rangle \in IntegerOrder \)assumes \( r \text{ is total on } G \) and \( A\subseteq G \) and \( \neg \text{HasAmaximum}(r,A) \) and \( x\in A \)
shows \( \exists y\in A.\ x \lt y \)assumes \( a\leq b \) and \( a\neq b \)
shows \( \neg (b\leq a) \)assumes \( f \in \mathcal{S} _+ \)
shows \( \exists g\in \mathcal{S} .\ f\sim g \wedge (\exists h\in \mathcal{S} .\ g\circ h \sim id(\mathbb{Z} )) \)assumes \( f \in \mathcal{S} _+ \)
shows \( \exists g\in \mathcal{S} .\ f\sim g \wedge (\exists h\in \mathcal{S} .\ g\circ h \sim id(int)) \)assumes \( 0 \neq 1 \) and \( M \text{ is commutative on } R \) and \( \forall a\in R_+.\ \exists b\in R.\ a\cdot b = 1 \)
shows \( \text{IsAnOrdField}(R,A,M,r) \)assumes \( \text{IsAnOrdField}(K,A,M,r) \)
shows \( \text{IsAfield}(K,A,M) \)assumes \( \text{IsAfield}(K,A,M) \)
shows \( field0(K,A,M) \)assumes \( \text{IsAnOrdField}(K,A,M,r) \)
shows \( field1(K,A,M,r) \)assumes \( a \in R_+ \)
shows \( a^{-1} \in R_+ \), \( a\cdot (a^{-1}) = 1 \), \( (a^{-1})\cdot a = 1 \)assumes \( a\in R_+ \) and \( a^{-1} \lt b \)
shows \( 1 \lt b\cdot a \)assumes \( a \lt b \)
shows \( (b - a)^{-1} \in R_+ \)assumes \( a\in R \), \( b\in R_+ \) and \( a\cdot b \lt c \)
shows \( a \lt c\cdot b^{-1} \)assumes \( b\in R \), \( c\in R_+ \) and \( a \lt b\cdot c \)
shows \( a\cdot c^{-1} \lt b \)assumes \( b\in R \), \( c\in R_+ \) and \( a \leq b\cdot c \)
shows \( a\cdot c^{-1} \leq b \)assumes \( a\in R \), \( b\in R_+ \) and \( a\cdot b \leq c \)
shows \( a \leq c\cdot b^{-1} \)assumes \( a \lt b \) and \( (b - a)^{-1} \lt c \)
shows \( 1 + a\cdot c \lt b\cdot c \)assumes \( a\leq b \) and \( c\in R_+ \)
shows \( a\cdot (c^{-1}) \leq b\cdot (c^{-1}) \)assumes \( a \lt b \) and \( c\in R_+ \)
shows \( a\cdot c \lt b\cdot c \), \( c\cdot a \lt c\cdot b \), \( a\cdot c^{-1} \lt b\cdot c^{-1} \)assumes \( a\in K \), \( b\in K \), \( b\neq 0 \), \( c\in K \)
shows \( a\cdot b\cdot (c\cdot b^{-1}) = a\cdot c \)assumes \( m \in \mathbb{Z} \)
shows \( \forall n \in \mathbb{Z} .\ (m^S)(n) = m\cdot n \), \( m^S \in \mathcal{S} \)assumes \( m \in \mathbb{Z} \)
shows \( ( - m)^S = - (m^S) \)assumes \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( (m^S) + (k^S) = ((m + k)^S) \)assumes \( a \in \mathbb{Z} \)
shows \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( 0 \cdot a = 0 \), \( a\cdot 0 = 0 \), \( ( - a) \in \mathbb{Z} \), \( ( - ( - a)) = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \)assumes \( m \in int \), \( k \in int \)
shows \( m^R + k^R = ((m + k)^R) \)assumes \( m \in int \)
shows \( ( - m)^R = - (m^R) \)assumes \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( (m^S) \circ (k^S) = ((m\cdot k)^S) \)assumes \( f \in \mathcal{S} \)
shows \( \exists m\in \mathbb{Z} .\ \exists g\in \mathcal{S} .\ (m^S\sim g \wedge (f\sim g \vee g + ( - f) \in \mathcal{S} _+)) \)assumes \( f \in \mathcal{S} \), \( g \in \mathcal{S} \) and \( f\sim g \vee (g + ( - f)) \in \mathcal{S} _+ \)
shows \( [f] \leq [g] \)assumes \( a\in \mathbb{R} \)
shows \( ( - a) \in \mathbb{R} \)assumes \( a\in \mathbb{R} \)
shows \( \exists m\in int.\ a \leq m^R \)assumes \( a\in \mathbb{R} \) and \( ( - a) \leq b \)
shows \( ( - b) \leq a \)assumes \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \) and \( (m^S) \sim (k^S) \)
shows \( m=k \)assumes \( m \leq n \)
shows \( m \ \$ \leq n \), \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)assumes \( m\leq n \)
shows \( (m^S) \sim (n^S) \vee (n^S) + ( - (m^S)) \in \mathcal{S} _+ \)assumes \( m\leq k \)
shows \( m^R \leq k^R \)assumes \( m \in int \), \( k \in int \) and \( m^R = k^R \)
shows \( m=k \)assumes \( a\in \mathbb{Z} \)
shows \( a \leq \text{GreaterOf}(IntegerOrder,1 ,a) \), \( \text{GreaterOf}(IntegerOrder,1 ,a) \in \mathbb{Z} _+ \), \( \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \in \mathbb{Z} _+ \), \( a \leq \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \), \( a \neq \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \)assumes \( m\leq k \), \( m\neq k \)
shows \( m^R \lt k^R \)assumes \( a\leq b \) and \( b \lt c \)
shows \( a \lt c \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( \neg (n\leq m) \)
shows \( m\leq n \), \( ( - n) \leq ( - m) \), \( m\neq n \)assumes \( a\leq b \), \( b\leq a \)
shows \( a=b \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( k \in int \), \( m \in int \) and \( m^R \leq k^R \)
shows \( m\leq k \)assumes \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( a\in \mathbb{R} \)
shows \( \{m \in int.\ m^R \leq a\} \neq 0 \)assumes \( \text{IsBoundedAbove}(A,IntegerOrder) \) and \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \)assumes \( a\leq b \)
shows \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)assumes \( a\in \mathbb{R} \)
shows \( \text{IsBoundedAbove}(\{m \in int.\ m^R \leq a\},IntegerOrder) \), \( \{m \in int.\ m^R \leq a\} \neq 0 \), \( \lfloor a\rfloor \in int \), \( \lfloor a\rfloor ^R \leq a \)assumes \( f \in BoundedIntMaps \)
shows \( [f] = 0 \)assumes \( m \in int \)
shows \( m^R \in \mathbb{R} \)assumes \( a \in \mathbb{R} _+ \)
shows \( a^{-1} \in \mathbb{R} _+ \), \( a^{-1} \in \mathbb{R} \)assumes \( a\in \mathbb{R} \)
shows \( \exists n\in \mathbb{Z} _+.\ a \lt n^R \)assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a\cdot b \in \mathbb{Z} _+ \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( a\cdot (b\cdot c) = (a\cdot b)\cdot c \)assumes \( m \in int \), \( k \in int \)
shows \( m^R \cdot k^R = (m\cdot k)^R \)assumes \( p\in \mathbb{Z} _+ \)
shows \( p^R \in \mathbb{R} \), \( 0 \leq p^R \), \( p^R \in \mathbb{R} _+ \)assumes \( a \in \mathbb{R} _+ \) and \( a^{-1} \lt b \)
shows \( 1 \lt b\cdot a \)assumes \( b \in \mathbb{R} _+ \) and \( a\leq b \) and \( 1 \lt c \)
shows \( a \lt b\cdot c \)assumes \( m \in int \) and \( m^R \leq a \)
shows \( m \leq \lfloor a\rfloor \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\leq b \)
shows \( \lfloor a\rfloor \leq \lfloor b\rfloor \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( p\in \mathbb{Z} _+ \)
shows \( \text{IsBoundedAbove}(\{\lfloor p^R\cdot x\rfloor .\ x\in S\},IntegerOrder) \), \( \Gamma (S,p) \in \{\lfloor p^R\cdot x\rfloor .\ x\in S\} \), \( \Gamma (S,p) \in int \)assumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y \)assumes \( f:X\rightarrow Y \), \( x\in X \) and \( f = \{\langle x,b(x)\rangle .\ x\in X\} \)
shows \( f(x) = b(x) \) and \( b(x)\in Y \)assumes \( a\in \mathbb{R} \)
shows \( a\leq a \)assumes \( \text{antisym}(r) \) and \( M \in A \) and \( \forall a\in A.\ \langle a,M\rangle \in r \)
shows \( \text{Maximum}(r,A) = M \)assumes \( m \in int \)
shows \( \lfloor m^R\rfloor = m \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b \in \mathbb{Z} \), \( a - b \in \mathbb{Z} \), \( a\cdot b \in \mathbb{Z} \), \( a + b = b + a \), \( a\cdot b = b\cdot a \), \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot ( - b) = a\cdot b \)assumes \( a\leq b \) and \( c\in \mathbb{R} \)
shows \( a + c \leq b + c \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( c \leq a + b \)
shows \( c - b \leq a \)assumes \( m \in int \), \( k \in int \)
shows \( m^R - k^R = (m - k)^R \)assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \) and \( i - m \leq k \)
shows \( i \leq k + m \)assumes \( x\in \mathbb{R} \) and \( p \in int \)
shows \( \lfloor x + p^R\rfloor = \lfloor x\rfloor + p \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \)
shows \( a + b \in \mathbb{R} \), \( a - b \in \mathbb{R} \), \( a\cdot b \in \mathbb{R} \), \( a + b = b + a \), \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( c \leq a - b \)
shows \( c + b \leq a \)assumes \( m \in int \), \( n \in int \)
shows \( \lfloor (m^R) + n^R\rfloor = m + n \)assumes \( a\in \mathbb{Z} \)
shows \( a - 1 \leq a \), \( a - 1 \neq a \), \( \neg (a\leq a - 1 ) \), \( \neg (a + 1 \leq a) \), \( \neg (1 + a \leq a) \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( \neg (a\leq b) \)
shows \( b \lt a \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( a - b \lt c \)
shows \( a \lt c + b \)assumes \( a\in \mathbb{R} \)
shows \( 1 + \lfloor a\rfloor ^R = (1 _Z + \lfloor a\rfloor )^R \)assumes \( a \lt b \)
shows \( (b - a)^{-1} \in \mathbb{R} _+ \)assumes \( a\in \mathbb{R} \)
shows \( a - \lfloor a\rfloor ^R \lt 1 \), \( a \lt (1 _Z + \lfloor a\rfloor )^R \)assumes \( a\leq b \) and \( c\in \mathbb{R} \)
shows \( c + a \leq c + b \)assumes \( a \lt b \) and \( (b - a)^{-1} \lt c \)
shows \( 1 + a\cdot c \lt b\cdot c \)assumes \( a\leq b \)
shows \( 0 \leq b - a \)assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a + b \)assumes \( a\leq b \), \( c\leq d \)
shows \( a + c \leq b + d \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \), \( d\in \mathbb{R} \)
shows \( a - b + (c - d) = a + c - b - d \)assumes \( x\in \mathbb{R} \) and \( p \in int \)
shows \( \lfloor x - p^R\rfloor = \lfloor x\rfloor - p \)assumes \( 0 \leq m \)
shows \( m\in \mathbb{Z} ^+ \) and \( abs(m) = m \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \) and \( x\in S \) and \( p\in \mathbb{Z} _+ \)
shows \( \lfloor p^R\cdot x\rfloor \leq \Gamma (S,p) \)assumes \( m \leq n \), \( n \leq m \)
shows \( m=n \)assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a + b \in \mathbb{Z} _+ \)assumes \( \text{IsBoundedAbove}(A,OrderOnReals) \)
shows \( A \subseteq \mathbb{R} \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( \text{Maximum}(OrderOnReals,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Maximum}(OrderOnReals,\{a,b,c\}) \in \mathbb{R} \), \( a \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \), \( b \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \), \( c \leq \text{Maximum}(OrderOnReals,\{a,b,c\}) \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( n\in \mathbb{Z} _+ \), \( x\in S \) and \( \Gamma (S,n) = \lfloor n^R\cdot x\rfloor \) and \( y\in S \), \( x\leq y \)
shows \( \Gamma (S,n) = \lfloor n^R\cdot y\rfloor \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \), \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \)assumes \( x\in \mathbb{R} \), \( y\in \mathbb{R} \)
shows \( abs(\lfloor x + y\rfloor - \lfloor x\rfloor - \lfloor y\rfloor ) \leq 2 _Z \)assumes \( f:\mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \in \mathcal{S} \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( g = \{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\} \)
shows \( g : \mathbb{Z} _+\rightarrow int \), \( \forall n\in \mathbb{Z} _+.\ g(n) = \Gamma (S,n) \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( m\in \mathbb{Z} _+ \), \( n\in \mathbb{Z} _+ \)
shows \( abs(\Gamma (S,m + n) - \Gamma (S,m) - \Gamma (S,n)) \leq 2 _Z \)assumes \( f:\mathbb{Z} _+\rightarrow int \), \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \text{OddExtension}(int,IntegerAddition,IntegerOrder,f) \in \mathcal{S} \)assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \)
shows \( s\circ r \in \mathcal{S} \)assumes \( f \in \mathcal{S} \) and \( N \in \mathbb{Z} \), \( M \in \mathbb{Z} \) and \( \forall n\in \mathbb{Z} _+.\ M\cdot n \leq f(N\cdot n) \)
shows \( M^S \sim f\circ (N^S) \vee (f\circ (N^S)) + ( - (M^S)) \in \mathcal{S} _+ \)assumes \( f \in \mathcal{S} \) and \( N \in \mathbb{Z} \), \( M \in \mathbb{Z} \) and \( \forall n\in \mathbb{Z} _+.\ f(N\cdot n) \leq M\cdot n \)
shows \( f\circ (N^S) \sim (M^S) \vee (M^S) + ( - (f\circ (N^S))) \in \mathcal{S} _+ \)assumes \( b\in \mathbb{R} \), \( c\in \mathbb{R} _+ \) and \( a \lt b\cdot c \)
shows \( a\cdot c^{-1} \lt b \)assumes \( a \lt b \) and \( c\in \mathbb{R} _+ \)
shows \( a\cdot c \lt b\cdot c \), \( c\cdot a \lt c\cdot b \), \( a\cdot c^{-1} \lt b\cdot c^{-1} \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( b\neq 0 \), \( c\in \mathbb{R} \)
shows \( a\cdot b\cdot (c\cdot b^{-1}) = a\cdot c \)assumes \( m \in int \), \( k \in int \)
shows \( \lfloor m^R\cdot k^R\rfloor = m\cdot k \)assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a \in \mathbb{Z} _+ \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( g(a) = f(a) \)assumes \( A\subseteq \mathbb{R} \) and \( \neg \text{HasAmaximum}(OrderOnReals,A) \) and \( x\in A \)
shows \( \exists y\in A.\ x \lt y \)assumes \( x \lt y \)
shows \( \exists M\in int.\ \exists N\in \mathbb{Z} _+.\ x\cdot N^R \lt M^R \wedge M^R \lt y\cdot N^R \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} _+ \) and \( a\cdot b \lt c \)
shows \( a \lt c\cdot b^{-1} \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( g = \{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\} \)
shows \( \text{OddExtension}(int,IntegerAddition,IntegerOrder,g) \in \mathcal{S} \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \) and \( x \lt y \), \( y\in S \) and \( N \in \mathbb{Z} _+ \), \( M \in int \) and \( M^R \lt y\cdot N^R \) and \( p \in \mathbb{Z} _+ \)
shows \( p\cdot M \leq \Gamma (S,p\cdot N) \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( p \in \mathbb{Z} _+ \) and \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( h(p) = \Gamma (S,p) \)assumes \( f \in \mathcal{S} \) and \( N \in int \), \( M \in int \) and \( \forall n\in \mathbb{Z} _+.\ M\cdot n \leq f(N\cdot n) \)
shows \( M^R \leq [f]\cdot (N^R) \)assumes \( b\in \mathbb{R} \), \( c\in \mathbb{R} _+ \) and \( a \leq b\cdot c \)
shows \( a\cdot c^{-1} \leq b \)assumes \( a\leq b \) and \( c\in \mathbb{R} _+ \)
shows \( c\cdot a \leq c\cdot b \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \), \( c\in \mathbb{R} \)
shows \( a\cdot (b\cdot c) = a\cdot c\cdot b \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} \) and \( \neg (a\leq b) \)
shows \( b \lt a \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \) and \( p \in \mathbb{Z} _+ \)
shows \( \exists x\in S.\ h(p) = \lfloor p^R\cdot x\rfloor \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \) and \( x\leq y \), \( x\in S \) and \( N \in \mathbb{Z} _+ \), \( M \in int \) and \( y\cdot N^R \lt M^R \) and \( p \in \mathbb{Z} _+ \)
shows \( \lfloor (N\cdot p)^R\cdot x\rfloor \leq M\cdot p \)assumes \( f \in \mathcal{S} \) and \( N \in int \), \( M \in int \) and \( \forall n\in \mathbb{Z} _+.\ f(N\cdot n) \leq M\cdot n \)
shows \( [f]\cdot (N^R) \leq M^R \)assumes \( a\in \mathbb{R} \), \( b\in \mathbb{R} _+ \) and \( a\cdot b \leq c \)
shows \( a \leq c\cdot b^{-1} \)assumes \( a \lt b \)
shows \( \neg (b\leq a) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( \text{Maximum}(r,A) = \text{Supremum}(r,A) \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \) and \( \neg \text{HasAmaximum}(OrderOnReals,S) \) and \( x\in S \) and \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( x \leq [h] \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \) and \( \forall x\in S.\ x\leq y \) and \( h = \text{OddExtension}(int,IntegerAddition,IntegerOrder,\{\langle p,\Gamma (S,p)\rangle .\ p\in \mathbb{Z} _+\}) \)
shows \( [h] \leq y \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( \text{IsBoundedAbove}(S,OrderOnReals) \), \( S\neq 0 \)
shows \( \text{HasAminimum}(OrderOnReals,\bigcap a\in S.\ OrderOnReals\{a\}) \)