This theory is about the first subject of algebraic topology: topological groups.
Topological group is a group that is a topological space at the same time. This means that a topological group is a triple of sets, say \((G,f,T)\) such that \(T\) is a topology on \(G\), \(f\) is a group operation on \(G\) and both \(f\) and the operation of taking inverse in \(G\) are continuous. Since IsarMathLib defines topology without using the carrier, (see Topology_ZF), in our setup we just use \(\bigcup T\) instead of \(G\) and say that the pair of sets \((\bigcup T , f)\) is a group. This way our definition of being a topological group is a statement about two sets: the topology \(T\) and the group operation \(f\) on \(G=\bigcup T\). Since the domain of the group operation is \(G\times G\), the pair of topologies in which \(f\) is supposed to be continuous is \(T\) and the product topology on \(G\times G\) (which we will call \(\tau\) below).
This way we arrive at the following definition of a predicate that states that pair of sets is a topological group.
definition
\( \text{IsAtopologicalGroup}(T,f) \equiv (T \text{ is a topology }) \wedge \text{IsAgroup}(\bigcup T,f) \wedge \) \( \text{IsContinuous}( \text{ProductTopology}(T,T),T,f) \wedge \) \( \text{IsContinuous}(T,T, \text{GroupInv}(\bigcup T,f)) \)
We will inherit notation from the topology0 locale. That locale assumes that \(T\) is a topology. For convenience we will denote \(G=\bigcup T\) and \(\tau\) to be the product topology on \(G\times G\). To that we add some notation specific to groups. We will use additive notation for the group operation, even though we don't assume that the group is abelian. The notation \(g+A\) will mean the left translation of the set \(A\) by element \(g\), i.e. \(g+A=\{g+a|a\in A\}\). The group operation \(G\) induces a natural operation on the subsets of \(G\) defined as \(\langle A,B\rangle \mapsto \{x+y | x\in A, y\in B \}\). Such operation has been considered in func_ZF and called \(f\) ''lifted to subsets of'' \(G\). We will denote the value of such operation on sets \(A,B\) as \(A+B\). The set of neigboorhoods of zero (denoted \( \mathcal{N}_0 \)) is the collection of (not necessarily open) sets whose interior contains the neutral element of the group.
locale topgroup = topology0 +
defines \( G \equiv \bigcup T \)
defines \( \tau \equiv \text{ProductTopology}(T,T) \)
assumes Ggroup: \( \text{IsAgroup}(G,f) \)
assumes fcon: \( \text{IsContinuous}(\tau ,T,f) \)
assumes inv_cont: \( \text{IsContinuous}(T,T, \text{GroupInv}(G,f)) \)
defines \( x + y \equiv f\langle x,y\rangle \)
defines \( ( - x) \equiv \text{GroupInv}(G,f)(x) \)
defines \( x - y \equiv x + ( - y) \)
defines \( -A \equiv \text{GroupInv}(G,f)(A) \)
defines \( x + A \equiv \text{LeftTranslation}(G,f,x)(A) \)
defines \( A + x \equiv \text{RightTranslation}(G,f,x)(A) \)
defines \( A + B \equiv (f \text{ lifted to subsets of } G)\langle A,B\rangle \)
defines \( 0 \equiv \text{ TheNeutralElement}(G,f) \)
defines \( \mathcal{N}_0 \equiv \{A \in Pow(G).\ 0 \in int(A)\} \)
defines \( \sum k \equiv \text{Fold1}(f,k) \)
The first lemma states that we indeeed talk about topological group in the context of topgroup locale.
lemma (in topgroup) topGroup:
shows \( \text{IsAtopologicalGroup}(T,f) \) using topSpaceAssum, Ggroup, fcon, inv_cont, IsAtopologicalGroup_defIf a pair of sets \((T,f)\) forms a topological group, then all theorems proven in the topgroup context are valid as applied to \((T,f)\).
lemma topGroupLocale:
assumes \( \text{IsAtopologicalGroup}(T,f) \)
shows \( topgroup(T,f) \) using assms, IsAtopologicalGroup_def, topgroup_def, topgroup_axioms.intro, topology0_defWe can use the group0 locale in the context of topgroup.
lemma (in topgroup) group0_valid_in_tgroup:
shows \( group0(G,f) \) using Ggroup, group0_defWe can use the group0 locale in the context of topgroup.
unfolding group0_def, gzero_def, grop_def, grinv_def using Ggroup
We can use semigr0 locale in the context of topgroup.
lemma (in topgroup) semigr0_valid_in_tgroup:
shows \( semigr0(G,f) \) using Ggroup, IsAgroup_def, IsAmonoid_def, semigr0_defWe can use the prod_top_spaces0 locale in the context of topgroup.
lemma (in topgroup) prod_top_spaces0_valid:
shows \( prod\_top\_spaces0(T,T,T) \) using topSpaceAssum, prod_top_spaces0_defNegative of a group element is in group.
lemma (in topgroup) neg_in_tgroup:
assumes \( g\in G \)
shows \( ( - g) \in G \) using assms, inverse_in_groupSum of two group elements is in the group.
lemma (in topgroup) group_op_closed_add:
assumes \( x_1 \in G \), \( x_2 \in G \)
shows \( x_1 + x_2 \in G \) using assms, group_op_closedZero is in the group.
lemma (in topgroup) zero_in_tgroup:
shows \( 0 \in G \) using group0_2_L2Another lemma about canceling with two group elements written in additive notation
lemma (in topgroup) inv_cancel_two_add:
assumes \( x_1 \in G \), \( x_2 \in G \)
shows \( x_1 + ( - x_2) + x_2 = x_1 \), \( x_1 + x_2 + ( - x_2) = x_1 \), \( ( - x_1) + (x_1 + x_2) = x_2 \), \( x_1 + (( - x_1) + x_2) = x_2 \) using assms, inv_cancel_twoUseful identities proven in the Group_ZF theory, rewritten here in additive notation. Note since the group operation notation is left associative we don't really need the first set of parentheses in some cases.
lemma (in topgroup) cancel_middle_add:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)proofWe can cancel an element on the right from both sides of an equation.
lemma (in topgroup) cancel_right_add:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + x_2 = x_3 + x_2 \)
shows \( x_1 = x_3 \) using assms, cancel_rightWe can cancel an element on the left from both sides of an equation.
lemma (in topgroup) cancel_left_add:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + x_2 = x_1 + x_3 \)
shows \( x_2 = x_3 \) using assms, cancel_leftWe can put an element on the other side of an equation.
lemma (in topgroup) put_on_the_other_side:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 = x_1 + x_2 \)
shows \( x_3 + ( - x_2) = x_1 \) and \( ( - x_1) + x_3 = x_2 \) using assms, group0_2_L18A simple equation from lemma simple_equation0 in Group_ZF in additive notation
lemma (in topgroup) simple_equation0_add:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + ( - x_2) = ( - x_3) \)
shows \( x_3 = x_2 + ( - x_1) \) using assms, simple_equation0A simple equation from lemma simple_equation1 in Group_ZF in additive notation
lemma (in topgroup) simple_equation1_add:
assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( ( - x_1) + x_2 = ( - x_3) \)
shows \( x_3 = ( - x_2) + x_1 \) using assms, simple_equation1The set comprehension form of negative of a set. The proof uses the ginv_image lemma from Group_ZF theory which states the same thing in multiplicative notation.
lemma (in topgroup) ginv_image_add:
assumes \( V\subseteq G \)
shows \( (-V)\subseteq G \) and \( (-V) = \{ - x.\ x \in V\} \) using assms, ginv_imageThe additive notation version of ginv_image_el lemma from Group_ZF theory
lemma (in topgroup) ginv_image_el_add:
assumes \( V\subseteq G \), \( x \in (-V) \)
shows \( ( - x) \in V \) using assms, ginv_image_elOf course the product topology is a topology (on \(G\times G\)).
lemma (in topgroup) prod_top_on_G:
shows \( \tau \text{ is a topology } \) and \( \bigcup \tau = G\times G \) using topSpaceAssum, Top_1_4_T1Let's recall that \(f\) is a binary operation on \(G\) in this context.
lemma (in topgroup) topgroup_f_binop:
shows \( f : G\times G \rightarrow G \) using Ggroup, group0_def, group_oper_funA subgroup of a topological group is a topological group with relative topology and restricted operation. Relative topology is the same as \( T \text{ restricted to } H \) which is defined to be \(\{V \cap H: V\in T\}\) in ZF1 theory.
lemma (in topgroup) top_subgroup:
assumes A1: \( \text{IsAsubgroup}(H,f) \)
shows \( \text{IsAtopologicalGroup}(T \text{ restricted to } H,\text{restrict}(f,H\times H)) \)proofIn this section we list some properties of operations of translating a set and reflecting it around the neutral element of the group. Many of the results are proven in other theories, here we just collect them and rewrite in notation specific to the topgroup context.
Different ways of looking at adding sets.
lemma (in topgroup) interval_add:
assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)proofIf the neutral element is in a set, then it is in the sum of the sets.
lemma (in topgroup) interval_add_zero:
assumes \( A\subseteq G \), \( 0 \in A \)
shows \( 0 \in A + A \)proofSome lemmas from Group_ZF_1 about images of set by translations written in additive notation
lemma (in topgroup) lrtrans_image:
assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \) using assms, ltrans_image, rtrans_imageRight and left translations of a set are subsets of the group. This is of course typically applied to the subsets of the group, but formally we don't need to assume that.
lemma (in topgroup) lrtrans_in_group_add:
assumes \( x\in G \)
shows \( x + V \subseteq G \) and \( V + x \subseteq G \) using assms, lrtrans_in_groupA corollary from interval_add
corollary (in topgroup) elements_in_set_sum:
assumes \( A\subseteq G \), \( B\subseteq G \), \( t \in A + B \)
shows \( \exists s\in A.\ \exists q\in B.\ t=s + q \) using assms, interval_add(4)A corollary from lrtrans_image
corollary (in topgroup) elements_in_ltrans:
assumes \( B\subseteq G \), \( g\in G \), \( t \in g + B \)
shows \( \exists q\in B.\ t=g + q \) using assms, lrtrans_image(1)Another corollary of lrtrans_image
corollary (in topgroup) elements_in_rtrans:
assumes \( B\subseteq G \), \( g\in G \), \( t \in B + g \)
shows \( \exists q\in B.\ t=q + g \) using assms, lrtrans_image(2)Another corollary from interval_add
corollary (in topgroup) elements_in_set_sum_inv:
assumes \( A\subseteq G \), \( B\subseteq G \), \( t=s + q \), \( s\in A \), \( q\in B \)
shows \( t \in A + B \) using assms, interval_addAnother corollary of lrtrans_image
corollary (in topgroup) elements_in_ltrans_inv:
assumes \( B\subseteq G \), \( g\in G \), \( q\in B \), \( t=g + q \)
shows \( t \in g + B \) using assms, lrtrans_image(1)Another corollary of rtrans_image_add
lemma (in topgroup) elements_in_rtrans_inv:
assumes \( B\subseteq G \), \( g\in G \), \( q\in B \), \( t=q + g \)
shows \( t \in B + g \) using assms, lrtrans_image(2)Right and left translations are continuous.
lemma (in topgroup) trans_cont:
assumes \( g\in G \)
shows \( \text{IsContinuous}(T,T, \text{RightTranslation}(G,f,g)) \) and \( \text{IsContinuous}(T,T, \text{LeftTranslation}(G,f,g)) \) using assms, trans_eq_section, topgroup_f_binop, fcon, prod_top_spaces0_valid, fix_1st_var_cont, fix_2nd_var_contLeft and right translations of an open set are open.
lemma (in topgroup) open_tr_open:
assumes \( g\in G \) and \( V\in T \)
shows \( g + V \in T \) and \( V + g \in T \) using assms, neg_in_tgroup, trans_cont, IsContinuous_def, trans_image_vimageRight and left translations are homeomorphisms.
lemma (in topgroup) tr_homeo:
assumes \( g\in G \)
shows \( \text{IsAhomeomorphism}(T,T, \text{RightTranslation}(G,f,g)) \) and \( \text{IsAhomeomorphism}(T,T, \text{LeftTranslation}(G,f,g)) \) using assms, trans_bij, trans_cont, open_tr_open, bij_cont_open_homeoLeft translations preserve interior.
lemma (in topgroup) ltrans_interior:
assumes A1: \( g\in G \) and A2: \( A\subseteq G \)
shows \( g + int(A) = int(g + A) \)proofRight translations preserve interior.
lemma (in topgroup) rtrans_interior:
assumes A1: \( g\in G \) and A2: \( A\subseteq G \)
shows \( int(A) + g = int(A + g) \)proofTranslating by an inverse and then by an element cancels out.
lemma (in topgroup) trans_inverse_elem:
assumes \( g\in G \) and \( A\subseteq G \)
shows \( g + (( - g) + A) = A \) using assms, neg_in_tgroup, trans_comp_image, group0_2_L6, trans_neutral, image_id_sameInverse of an open set is open.
lemma (in topgroup) open_inv_open:
assumes \( V\in T \)
shows \( (-V) \in T \) using assms, inv_image_vimage, inv_cont, IsContinuous_defInverse is a homeomorphism.
lemma (in topgroup) inv_homeo:
shows \( \text{IsAhomeomorphism}(T,T, \text{GroupInv}(G,f)) \) using group_inv_bij, inv_cont, open_inv_open, bij_cont_open_homeoTaking negative preserves interior.
lemma (in topgroup) int_inv_inv_int:
assumes \( A \subseteq G \)
shows \( int(-A) = -(int(A)) \) using assms, inv_homeo, int_top_invariantZero neighborhoods are (not necessarily open) sets whose interior contains the neutral element of the group. In the topgroup locale the collection of neighboorhoods of zero is denoted \( \mathcal{N}_0 \).
The whole space is a neighborhood of zero.
lemma (in topgroup) zneigh_not_empty:
shows \( G \in \mathcal{N}_0 \) using topSpaceAssum, IsATopology_def, Top_2_L3, zero_in_tgroupAny element that belongs to a subset of the group belongs to that subset with the interior of a neighborhood of zero added.
lemma (in topgroup) elem_in_int_sad:
assumes \( A\subseteq G \), \( g\in A \), \( H \in \mathcal{N}_0 \)
shows \( g \in A + int(H) \)proofAny element belongs to the interior of any neighboorhood of zero left translated by that element.
lemma (in topgroup) elem_in_int_ltrans:
assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(g + H) \) and \( g \in int(g + H) + int(H) \)proofAny element belongs to the interior of any neighboorhood of zero right translated by that element.
lemma (in topgroup) elem_in_int_rtrans:
assumes A1: \( g\in G \) and A2: \( H \in \mathcal{N}_0 \)
shows \( g \in int(H + g) \) and \( g \in int(H + g) + int(H) \)proofNegative of a neighborhood of zero is a neighborhood of zero.
lemma (in topgroup) neg_neigh_neigh:
assumes \( H \in \mathcal{N}_0 \)
shows \( (-H) \in \mathcal{N}_0 \)proofLeft translating an open set by a negative of a point that belongs to it makes it a neighboorhood of zero.
lemma (in topgroup) open_trans_neigh:
assumes A1: \( U\in T \) and \( g\in U \)
shows \( ( - g) + U \in \mathcal{N}_0 \)proofRight translating an open set by a negative of a point that belongs to it makes it a neighboorhood of zero.
lemma (in topgroup) open_trans_neigh_2:
assumes A1: \( U\in T \) and \( g\in U \)
shows \( U + ( - g) \in \mathcal{N}_0 \)proofRight and left translating an neighboorhood of zero by a point and its negative makes it back a neighboorhood of zero.
lemma (in topgroup) lrtrans_neigh:
assumes \( W\in \mathcal{N}_0 \) and \( x\in G \)
shows \( x + (W + ( - x)) \in \mathcal{N}_0 \) and \( (x + W) + ( - x) \in \mathcal{N}_0 \)proofIf \(A\) is a subset of \(B\) translated by \(-x\) then its translation by \(x\) is a subset of \(B\).
lemma (in topgroup) trans_subset:
assumes \( A \subseteq (( - x) + B) \), \( x\in G \), \( B\subseteq G \)
shows \( x + A \subseteq B \)proofEvery neighborhood of zero has a symmetric subset that is a neighborhood of zero.
theorem (in topgroup) exists_sym_zerohood:
assumes \( U\in \mathcal{N}_0 \)
shows \( \exists V\in \mathcal{N}_0.\ (V\subseteq U \wedge (-V)=V) \)proofWe can say even more than in exists_sym_zerohood: every neighborhood of zero \(U\) has a symmetric subset that is a neighborhood of zero and its set double is contained in \(U\).
theorem (in topgroup) exists_procls_zerohood:
assumes \( U\in \mathcal{N}_0 \)
shows \( \exists V\in \mathcal{N}_0.\ (V\subseteq U\wedge (V + V)\subseteq U \wedge (-V)=V) \)proofThis section is devoted to a characterization of closure in topological groups.
Closure of a set is contained in the sum of the set and any neighboorhood of zero.
lemma (in topgroup) cl_contains_zneigh:
assumes A1: \( A\subseteq G \) and A2: \( H \in \mathcal{N}_0 \)
shows \( cl(A) \subseteq A + H \)proofThe next theorem provides a characterization of closure in topological groups in terms of neighborhoods of zero.
theorem (in topgroup) cl_topgroup:
assumes \( A\subseteq G \)
shows \( cl(A) = (\bigcap H\in \mathcal{N}_0.\ A + H) \)proofIn this section we consider properties of the function \(G^n\rightarrow G\), \(x=(x_0,x_1,...,x_{n-1})\mapsto \sum_{i=0}^{n-1}x_i\). We will model the cartesian product \(G^n\) by the space of sequences \(n\rightarrow G\), where \(n=\{0,1,...,n-1 \}\) is a natural number. This space is equipped with a natural product topology defined in Topology_ZF_3.
Let's recall first that the sum of elements of a group is an element of the group.
lemma (in topgroup) sum_list_in_group:
assumes \( n \in nat \) and \( x: succ(n)\rightarrow G \)
shows \( (\sum x) \in G \)proofIn this context \( x + y \) is the same as the value of the group operation on the elements \(x\) and \(y\). Normally we shouldn't need to state this a s separate lemma.
lemma (in topgroup) grop_def1:
shows \( f\langle x,y\rangle = x + y \)Another theorem from Semigroup_ZF theory that is useful to have in the additive notation.
lemma (in topgroup) shorter_set_add:
assumes \( n \in nat \) and \( x: succ(succ(n))\rightarrow G \)
shows \( (\sum x) = (\sum \text{Init}(x)) + (x(succ(n))) \)proofSum is a continuous function in the product topology.
theorem (in topgroup) sum_continuous:
assumes \( n \in nat \)
shows \( \text{IsContinuous}( \text{SeqProductTopology}(succ(n),T),T,\{\langle x,\sum x\rangle .\ x\in succ(n)\rightarrow G\}) \)proofassumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot c^{-1}= (a\cdot b^{-1})\cdot (b\cdot c^{-1}) \), \( a^{-1}\cdot c = (a^{-1}\cdot b)\cdot (b^{-1}\cdot c) \), \( a\cdot (b\cdot c)^{-1} = a\cdot c^{-1}\cdot b^{-1} \), \( a\cdot (b\cdot c^{-1}) = a\cdot b\cdot c^{-1} \), \( (a\cdot b^{-1}\cdot c^{-1})^{-1} = c\cdot b\cdot a^{-1} \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot b^{-1}) = a \), \( a\cdot (b\cdot c)\cdot c^{-1} = a\cdot b \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot c^{-1}= (a\cdot b^{-1})\cdot (b\cdot c^{-1}) \), \( a^{-1}\cdot c = (a^{-1}\cdot b)\cdot (b^{-1}\cdot c) \), \( a\cdot (b\cdot c)^{-1} = a\cdot c^{-1}\cdot b^{-1} \), \( a\cdot (b\cdot c^{-1}) = a\cdot b\cdot c^{-1} \), \( (a\cdot b^{-1}\cdot c^{-1})^{-1} = c\cdot b\cdot a^{-1} \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot b^{-1}) = a \), \( a\cdot (b\cdot c)\cdot c^{-1} = a\cdot b \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( (a\cdot b)^{-1}\cdot (a\cdot c) = b^{-1}\cdot c \), \( (a\cdot b)\cdot (c\cdot b)^{-1} = a\cdot c^{-1} \), \( a^{-1}\cdot (a\cdot b\cdot c)\cdot c^{-1} = b \), \( a\cdot (b\cdot c^{-1})\cdot c = a\cdot b \), \( a\cdot b^{-1}\cdot (b\cdot c^{-1}) = a\cdot c^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( (a\cdot b)^{-1}\cdot (a\cdot c) = b^{-1}\cdot c \), \( (a\cdot b)\cdot (c\cdot b)^{-1} = a\cdot c^{-1} \), \( a^{-1}\cdot (a\cdot b\cdot c)\cdot c^{-1} = b \), \( a\cdot (b\cdot c^{-1})\cdot c = a\cdot b \), \( a\cdot b^{-1}\cdot (b\cdot c^{-1}) = a\cdot c^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( (a\cdot b)^{-1}\cdot (a\cdot c) = b^{-1}\cdot c \), \( (a\cdot b)\cdot (c\cdot b)^{-1} = a\cdot c^{-1} \), \( a^{-1}\cdot (a\cdot b\cdot c)\cdot c^{-1} = b \), \( a\cdot (b\cdot c^{-1})\cdot c = a\cdot b \), \( a\cdot b^{-1}\cdot (b\cdot c^{-1}) = a\cdot c^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \), \( a\cdot b = c\cdot b \)
shows \( a = c \)assumes \( a\in G \), \( b\in G \), \( c\in G \), \( a\cdot b = a\cdot c \)
shows \( b=c \)assumes \( a\in G \), \( b\in G \) and \( c = a\cdot b \)
shows \( c\cdot b^{-1} = a \), \( a^{-1}\cdot c = b \)assumes \( a\in G \), \( b\in G \), \( c\in G \), \( a\cdot b^{-1} = c^{-1} \)
shows \( c = b\cdot a^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \), \( a^{-1}\cdot b = c^{-1} \)
shows \( c = b^{-1}\cdot a \)assumes \( V\subseteq G \)
shows \( \text{GroupInv}(G,P)(V) \subseteq G \) and \( \text{GroupInv}(G,P)(V) = \{g^{-1}.\ g \in V\} \)assumes \( V\subseteq G \), \( g \in \text{GroupInv}(G,P)(V) \)
shows \( g^{-1} \in V \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \)
shows \( (T\times _tS) \text{ is a topology } \), \( \text{ProductCollection}(T,S) \text{ is a base for } (T\times _tS) \), \( \bigcup (T\times _tS) = \bigcup T \times \bigcup S \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( A \subseteq X_1 \) and \( f \text{ is continuous } \) and \( g = \text{restrict}(f,A) \) and \( \tau _3 = \tau _1 \text{ restricted to } A \)
shows \( \text{IsContinuous}(\tau _3, \tau _2 \text{ restricted to } g(A),g) \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \)
shows \( \text{ProductTopology}(T \text{ restricted to } A,S \text{ restricted to } B) =\) \( \text{ProductTopology}(T,S) \text{ restricted to } (A\times B) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{restrict}(P,H\times H)(H\times H) = H \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{restrict}( \text{GroupInv}(G,P),H)(H) = H \)assumes \( \text{IsAsubgroup}(H,P) \) and \( g = \text{restrict}(P,H\times H) \)
shows \( \text{GroupInv}(H,g) = \text{restrict}( \text{GroupInv}(G,P),H) \)assumes \( f : X\times X \rightarrow Y \) and \( A \subseteq X \), \( B \subseteq X \) and \( F = f \text{ lifted to subsets of } X \)
shows \( F\langle A,B\rangle \subseteq Y \) and \( F\langle A,B\rangle = f(A\times B) \), \( F\langle A,B\rangle = \{f(p).\ p \in A\times B\} \), \( F\langle A,B\rangle = \{f\langle x,y\rangle .\ \langle x,y\rangle \in A\times B\} \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( (P \text{ lifted to subsets of } G)\langle A,B\rangle = (\bigcup a\in A.\ \text{LeftTranslation}(G,P,a)(B)) \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( V\subseteq G \) and \( x\in G \)
shows \( \text{LeftTranslation}(G,P,x)(V) = \{x\cdot v.\ v\in V\} \)assumes \( V\subseteq G \) and \( x\in G \)
shows \( \text{RightTranslation}(G,P,x)(V) = \{v\cdot x.\ v\in V\} \)assumes \( x\in G \)
shows \( \text{LeftTranslation}(G,P,x)(V) \subseteq G \) and \( \text{RightTranslation}(G,P,x)(V) \subseteq G \)assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \)assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) = \text{Fix2ndVar}(P,g) \) and \( \text{LeftTranslation}(G,P,g) = \text{Fix1stVar}(P,g) \)assumes \( f: X_1\times X_2\rightarrow X_3 \) and \( \text{IsContinuous}(\eta ,\tau _3,f) \) and \( x\in X_1 \)
shows \( \text{IsContinuous}(\tau _2,\tau _3, \text{Fix1stVar}(f,x)) \)assumes \( f: X_1\times X_2\rightarrow X_3 \) and \( \text{IsContinuous}(\eta ,\tau _3,f) \) and \( y\in X_2 \)
shows \( \text{IsContinuous}(\tau _1,\tau _3, \text{Fix2ndVar}(f,y)) \)assumes \( g\in G \)
shows \( ( - g) \in G \)assumes \( g\in G \)
shows \( \text{IsContinuous}(T,T, \text{RightTranslation}(G,f,g)) \) and \( \text{IsContinuous}(T,T, \text{LeftTranslation}(G,f,g)) \)assumes \( g\in G \)
shows \( \text{LeftTranslation}(G,P,g)(A) = \text{LeftTranslation}(G,P,g^{-1})^{-1}(A) \) and \( \text{RightTranslation}(G,P,g)(A) = \text{RightTranslation}(G,P,g^{-1})^{-1}(A) \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) \in \text{bij}(G,G) \) and \( \text{LeftTranslation}(G,P,g) \in \text{bij}(G,G) \)assumes \( g\in G \) and \( V\in T \)
shows \( g + V \in T \) and \( V + g \in T \)assumes \( f \in \text{bij}(\bigcup T,\bigcup S) \) and \( \text{IsContinuous}(T,S,f) \) and \( \forall U\in T.\ f(U) \in S \)
shows \( \text{IsAhomeomorphism}(T,S,f) \)assumes \( g\in G \)
shows \( \text{IsAhomeomorphism}(T,T, \text{RightTranslation}(G,f,g)) \) and \( \text{IsAhomeomorphism}(T,T, \text{LeftTranslation}(G,f,g)) \)assumes \( A\subseteq \bigcup T \) and \( \text{IsAhomeomorphism}(T,S,f) \)
shows \( f( \text{Interior}(A,T)) = \text{Interior}(f(A),S) \)assumes \( g\in G \), \( h\in G \) and \( T_g = \text{LeftTranslation}(G,P,g) \), \( T_h = \text{LeftTranslation}(G,P,h) \)
shows \( T_g(T_h(A)) = \text{LeftTranslation}(G,P,g\cdot h)(A) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( A\subseteq X \)
shows \( id(X)(A) = A \)assumes \( V\in T \)
shows \( (-V) \in T \)assumes \( A\subseteq G \), \( B\subseteq G \), \( t=s + q \), \( s\in A \), \( q\in B \)
shows \( t \in A + B \)assumes \( A\subseteq G \), \( g\in G \) and \( 1 \in A \)
shows \( g \in \text{LeftTranslation}(G,P,g)(A) \), \( g \in \text{RightTranslation}(G,P,g)(A) \)assumes \( g\in G \) and \( A\subseteq G \)
shows \( g + int(A) = int(g + A) \)assumes \( x\in G \)
shows \( x + V \subseteq G \) and \( V + x \subseteq G \)assumes \( A\subseteq G \), \( g\in A \), \( H \in \mathcal{N}_0 \)
shows \( g \in A + int(H) \)assumes \( g\in G \) and \( A\subseteq G \)
shows \( int(A) + g = int(A + g) \)assumes \( x\in G \)
shows \( x + V \subseteq G \) and \( V + x \subseteq G \)assumes \( A\subseteq G \) and \( 1 \in A \)
shows \( 1 \in \text{GroupInv}(G,P)(A) \)assumes \( A \subseteq G \)
shows \( int(-A) = -(int(A)) \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( A\subseteq G \) and \( g\in A \)
shows \( 1 \in \text{LeftTranslation}(G,P,g^{-1})(A) \), \( 1 \in \text{RightTranslation}(G,P,g^{-1})(A) \)assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(H + g) \) and \( g \in int(H + g) + int(H) \)assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(g + H) \) and \( g \in int(g + H) + int(H) \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A\cap B) = f^{-1}(A) \cap f^{-1}(B) \)assumes \( f \in \text{inj}(X,Y) \) and \( A\subseteq X \)
shows \( f^{-1}(f(A)) = A \)assumes \( H \in \mathcal{N}_0 \)
shows \( (-H) \in \mathcal{N}_0 \)assumes \( x\in A \), \( A=B \)
shows \( x\in B \)assumes \( A\subseteq B \)
shows \( f(A)\subseteq f(B) \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \) and \( U \in \text{ProductTopology}(T,S) \) and \( x \in U \)
shows \( \exists V W.\ V\in T \wedge W\in S \wedge V\times W \subseteq U \wedge x \in V\times W \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( f : X\times X \rightarrow Y \) and \( A \subseteq X \), \( B \subseteq X \) and \( F = f \text{ lifted to subsets of } X \)
shows \( F\langle A,B\rangle \subseteq Y \) and \( F\langle A,B\rangle = f(A\times B) \), \( F\langle A,B\rangle = \{f(p).\ p \in A\times B\} \), \( F\langle A,B\rangle = \{f\langle x,y\rangle .\ \langle x,y\rangle \in A\times B\} \)assumes \( U\in \mathcal{N}_0 \)
shows \( \exists V\in \mathcal{N}_0.\ (V\subseteq U \wedge (-V)=V) \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( A \subseteq \bigcup T \)
shows \( cl(A) \subseteq \bigcup T \), \( cl(\bigcup T - A) = \bigcup T - int(A) \)assumes \( A \subseteq \bigcup T \) and \( U\in T \) and \( x \in cl(A) \cap U \)
shows \( A\cap U \neq 0 \)assumes \( V\subseteq G \) and \( y\in G \) and \( x \in \text{LeftTranslation}(G,P,y)( \text{GroupInv}(G,P)(V)) \)
shows \( y \in \text{LeftTranslation}(G,P,x)(V) \)assumes \( A\subseteq G \) and \( H \in \mathcal{N}_0 \)
shows \( cl(A) \subseteq A + H \)assumes \( U\in T \) and \( g\in U \)
shows \( ( - g) + U \in \mathcal{N}_0 \)assumes \( A \subseteq \bigcup T \) and \( x\in \bigcup T \) and \( \forall U\in T.\ x\in U \longrightarrow U\cap A \neq 0 \)
shows \( x \in cl(A) \)assumes \( n \in nat \) and \( a : succ(n) \rightarrow G \)
shows \( (\prod a) \in G \)assumes \( k \in nat \) and \( a \in succ(succ(k)) \rightarrow G \)
shows \( (\prod a) = (\prod \text{Init}(a)) \cdot a(succ(k)) \)assumes \( a: 1 \rightarrow G \)
shows \( (\prod a) = a(0) \)assumes \( \tau \text{ is a topology } \)
shows \( \text{IsAhomeomorphism}( \text{SeqProductTopology}(1,\tau ),\tau ,\{\langle x,x(0)\rangle .\ x\in 1\rightarrow \bigcup \tau \}) \)assumes \( n \in nat \) and \( x: succ(n)\rightarrow G \)
shows \( (\sum x) \in G \)assumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y \)assumes \( n \in nat \) and \( a: succ(n) \rightarrow X \)
shows \( \text{Init}(a) : n \rightarrow X \), \( \forall k\in n.\ \text{Init}(a)(k) = a(k) \), \( a = \text{Append}( \text{Init}(a), a(n)) \)assumes \( \tau \text{ is a topology } \) and \( n \in nat \) and \( f = \{\langle x,\langle \text{Init}(x),x(n)\rangle \rangle .\ x \in succ(n)\rightarrow \bigcup \tau \} \) and \( T = \text{SeqProductTopology}(n,\tau ) \) and \( S = \text{SeqProductTopology}(succ(n),\tau ) \)
shows \( \text{IsAhomeomorphism}(S, \text{ProductTopology}(T,\tau ),f) \)assumes \( T \text{ is a topology } \)
shows \( \text{SeqProductTopology}(I,T) \text{ is a topology } \) and \( \text{ProductTopBase}(I,T) \text{ is a base for } \text{SeqProductTopology}(I,T) \) and \( \bigcup \text{SeqProductTopology}(I,T) = (I\rightarrow \bigcup T) \)assumes \( \tau _1 \text{ is a topology } \) and \( \tau _2 \text{ is a topology } \) and \( \eta _1 \text{ is a topology } \) and \( f_1:\bigcup \tau _1\rightarrow \bigcup \eta _1 \) and \( \text{IsContinuous}(\tau _1,\eta _1,f_1) \) and \( g = \{\langle p, \langle f_1(\text{fst}(p)),\text{snd}(p)\rangle \rangle .\ p \in \bigcup \tau _1\times \bigcup \tau _2\} \)
shows \( \text{IsContinuous}( \text{ProductTopology}(\tau _1,\tau _2), \text{ProductTopology}(\eta _1,\tau _2),g) \)assumes \( x\in X \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\}(x)=b(x) \)assumes \( n \in nat \) and \( x: succ(succ(n))\rightarrow G \)
shows \( (\sum x) = (\sum \text{Init}(x)) + (x(succ(n))) \)assumes \( f:A\rightarrow B \), \( g:B\rightarrow C \), \( h:C\rightarrow D \) and \( x\in A \)
shows \( (h\circ g\circ f)(x) \in D \), \( (h\circ g\circ f)(x) = h(g(f(x))) \)assumes \( f: X\rightarrow Y \), \( g: X\rightarrow Z \) and \( \forall x\in X.\ f(x) = g(x) \)
shows \( f = g \)assumes \( \text{IsContinuous}(T,S,f) \) and \( \text{IsContinuous}(S,R,g) \) and \( \text{IsContinuous}(R,P,h) \)
shows \( \text{IsContinuous}(T,P,h\circ g\circ f) \)assumes \( n\in nat \) and \( P(0) \) and \( \forall k\in nat.\ P(k)\longrightarrow P(succ(k)) \)
shows \( P(n) \)