In Order_ZF we define some notions related to order relations based on the nonstrict orders (\(\leq \) type). Some people however prefer to talk about these notions in terms of the strict order relation (\(<\) type). This is the case for the standard Isabelle Order.thy and also for Metamath. In this theory file we repeat some developments from Order_ZF using the strict order relation as a basis.This is mostly useful for Metamath translation, but is also of some general interest. The names of theorems are copied from Metamath.
In this section we introduce some definitions taken from Metamath and relate them to the ones used by the standard Isabelle Order.thy.
The next definition is the strict version of the linear order. What we write as R Orders A is written \(R Ord A\) in Metamath.
definition
\( R \text{ orders } A \equiv \forall x y z.\ (x\in A \wedge y\in A \wedge z\in A) \longrightarrow \) \( (\langle x,y\rangle \in R \longleftrightarrow \neg (x=y \vee \langle y,x\rangle \in R)) \wedge \) \( (\langle x,y\rangle \in R \wedge \langle y,z\rangle \in R \longrightarrow \langle x,z\rangle \in R) \)
The definition of supremum for a (strict) linear order.
definition
\( \text{Sup}(B,A,R) \equiv \) \( \bigcup \{x \in A.\ (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge \) \( (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow (\exists z\in B.\ \langle y,z\rangle \in R))\} \)
Definition of infimum for a linear order. It is defined in terms of supremum.
definition
\( \text{Infim}(B,A,R) \equiv \text{Sup}(B,A,converse(R)) \)
If relation \(R\) orders a set \(A\), (in Metamath sense) then \(R\) is irreflexive, transitive and linear therefore is a total order on \(A\) (in Isabelle sense).
lemma orders_imp_tot_ord:
assumes A1: \( R \text{ orders } A \)
shows \( ir\text{refl}(A,R) \), \( trans[A](R) \), \( part\_ord(A,R) \), \( linear(A,R) \), \( tot\_ord(A,R) \)proofA converse of orders_imp_tot_ord. Together with that theorem this shows that Metamath's notion of an order relation is equivalent to Isabelles tot_ord predicate.
lemma tot_ord_imp_orders:
assumes A1: \( tot\_ord(A,R) \)
shows \( R \text{ orders } A \)proofIn this section we discuss the properties of strict order relations. This continues the development contained in the standard Isabelle's Order.thy with a view towards using the theorems translated from Metamath.
A relation orders a set iff the converse relation orders a set. Going one way we can use the the lemma tot_od_converse from the standard Isabelle's Order.thy.The other way is a bit more complicated (note that in Isabelle for \( converse(converse(r)) = r \) one needs \(r\) to consist of ordered pairs, which does not follow from the StrictOrder definition above).
lemma cnvso:
shows \( R \text{ orders } A \longleftrightarrow converse(R) \text{ orders } A \)proofSupremum is unique, if it exists.
lemma supeu:
assumes A1: \( R \text{ orders } A \) and A2: \( x\in A \) and A3: \( \forall y\in B.\ \langle x,y\rangle \notin R \) and A4: \( \forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R) \)
shows \( \exists !x.\ x\in A\wedge (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R)) \)proofSupremum has expected properties if it exists.
lemma sup_props:
assumes A1: \( R \text{ orders } A \) and A2: \( \exists x\in A.\ (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R)) \)
shows \( \text{Sup}(B,A,R) \in A \), \( \forall y\in B.\ \langle \text{Sup}(B,A,R),y\rangle \notin R \), \( \forall y\in A.\ \langle y, \text{Sup}(B,A,R)\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R ) \)proofElements greater or equal than any element of \(B\) are greater or equal than supremum of \(B\).
lemma supnub:
assumes A1: \( R \text{ orders } A \) and A2: \( \exists x\in A.\ (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R)) \) and A3: \( c \in A \) and A4: \( \forall z\in B.\ \langle c,z\rangle \notin R \)
shows \( \langle c, \text{Sup}(B,A,R)\rangle \notin R \)proofassumes \( R \text{ orders } A \)
shows \( ir\text{refl}(A,R) \), \( trans[A](R) \), \( part\_ord(A,R) \), \( linear(A,R) \), \( tot\_ord(A,R) \)assumes \( tot\_ord(A,R) \)
shows \( R \text{ orders } A \)assumes \( R \text{ orders } A \) and \( x\in A \) and \( \forall y\in B.\ \langle x,y\rangle \notin R \) and \( \forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R) \)
shows \( \exists !x.\ x\in A\wedge (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R)) \)assumes \( \exists ! x.\ x\in A \wedge \phi (x) \)
shows \( \exists a.\ \{x\in A.\ \phi (x)\} = \{a\} \), \( \bigcup \{x\in A.\ \phi (x)\} \in A \), \( \phi (\bigcup \{x\in A.\ \phi (x)\}) \)assumes \( R \text{ orders } A \) and \( \exists x\in A.\ (\forall y\in B.\ \langle x,y\rangle \notin R) \wedge (\forall y\in A.\ \langle y,x\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R)) \)
shows \( \text{Sup}(B,A,R) \in A \), \( \forall y\in B.\ \langle \text{Sup}(B,A,R),y\rangle \notin R \), \( \forall y\in A.\ \langle y, \text{Sup}(B,A,R)\rangle \in R \longrightarrow ( \exists z\in B.\ \langle y,z\rangle \in R ) \)