In this theory we continue the subject of finite sets and order relation from FinOrd_ZF with some consequences of finite choice for down-directed sets.
In the Order_ZF theory we define what it means that a relation \(r\) down-directs a set \(X\): each two elements of \(X\) have a common lower bound in \(X\). If the relation is a preorder (i.e. is reflexive and transitive) and it down-directs \(X\) we say that \(X\) is a down-directed set (by the relation \(r\)).
The next lemma states that each finite subset of a down-directed set has a lower bound in \(X\).
lemma fin_dir_set_bounded:
assumes \( \text{IsDownDirectedSet}(X,r) \) and \( B\in \text{FinPow}(X) \)
shows \( \exists x\in X.\ \forall t\in B.\ \langle x,t\rangle \in r \)proofSuppose \(Y\) is a set down-directed by a (preorder) relation \(r\) and \(f,g\) are funtions defined on two finite subsets \(A,B\), resp., of \(X\), valued in Y (i.e.\(f:A\rightarrow Y\), \(f:B\rightarrow Y\) and \(A,B\) are finite subsets of \(X\)). Then there exist a function \(h:A\cup B\rightarrow Y\) that is a lower bound for \(f\) on \(A\) and for \(g\) on \(B\).
lemma two_fun_low_bound:
assumes \( \text{IsDownDirectedSet}(Y,r) \), \( A\in \text{FinPow}(X) \), \( B\in \text{FinPow}(X) \), \( f:A\rightarrow Y \), \( g:B\rightarrow Y \)
shows \( \exists h\in A\cup B\rightarrow Y.\ (\forall x\in A.\ \langle h(x),f(x)\rangle \in r) \wedge (\forall x\in B.\ \langle h(x),g(x)\rangle \in r) \)proofassumes \( P(0) \) and \( \forall A \in \text{FinPow}(X).\ P(A) \longrightarrow (\forall a\in X.\ P(A \cup \{a\})) \) and \( B \in \text{FinPow}(X) \)
shows \( P(B) \)assumes \( A \in \text{FinPow}(X) \) and \( B \in \text{FinPow}(X) \)
shows \( A \cup B \in \text{FinPow}(X) \)assumes \( f:X\rightarrow Y \)
shows \( f\{x\} \in \text{FinPow}(Y) \)assumes \( \text{IsDownDirectedSet}(X,r) \) and \( B\in \text{FinPow}(X) \)
shows \( \exists x\in X.\ \forall t\in B.\ \langle x,t\rangle \in r \)assumes \( Finite(X) \), \( \forall x\in X.\ \exists y\in Y.\ P(x,y) \)
shows \( \exists f\in X\rightarrow Y.\ \forall x\in X.\ P(x,f(x)) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)