This section defines the concept of a ring ideal, and defines some basic concepts and types, finishing with the theorem that shows that the quotient of the additive group by the ideal is actually a full ring.
In ring theory ideals are special subsets of a ring that play a similar role as normal subgroups in the group theory.
An ideal is a subgroup of the additive group of the ring, which is closed by left and right multiplication by any ring element.
definition (in ring0)
\( I \triangleleft R \equiv (\forall x\in I.\ \forall y\in R.\ y\cdot x\in I \wedge x\cdot y\in I) \wedge \text{IsAsubgroup}(I,A) \)
To write less during proofs, we will write \( \mathcal{I} \) to denote the set of ideals of the ring \(R\).
abbreviation (in ring0)
\( \mathcal{I} \equiv \{J\in Pow(R).\ J\triangleleft R\} \)
The first examples of ideals are the whole ring and the zero ring:
lemma (in ring0) ring_self_ideal:
shows \( R \triangleleft R \) using group_self_subgroup, Ring_ZF_1_L4(3) unfolding Ideal_defThe singleton containing zero is and ideal.
lemma (in ring0) zero_ideal:
shows \( \{ 0 \} \triangleleft R \) unfolding Ideal_def using Ring_ZF_1_L6, unit_singl_subgrAn ideal is s subset of the the ring.
lemma (in ring0) ideal_dest_subset:
assumes \( I \triangleleft R \)
shows \( I \subseteq R \) using assms, group0_3_L2 unfolding Ideal_defIdeals are closed with respect to the ring addition.
lemma (in ring0) ideal_dest_sum:
assumes \( I \triangleleft R \), \( x\in I \), \( y\in I \)
shows \( x + y \in I \) using assms, group0_3_L6 unfolding Ideal_defIdeals are closed with respect to the ring multiplication.
lemma (in ring0) ideal_dest_mult:
assumes \( I \triangleleft R \), \( x\in I \), \( y\in R \)
shows \( x\cdot y \in I \), \( y\cdot x \in I \) using assms unfolding Ideal_defIdeals are closed with respect to taking the opposite in the ring.
lemma (in ring0) ideal_dest_minus:
assumes \( I \triangleleft R \), \( x\in I \)
shows \( ( - x) \in I \) using assms, group0_3_T3A unfolding Ideal_defEvery ideals contains zero.
lemma (in ring0) ideal_dest_zero:
assumes \( I \triangleleft R \)
shows \( 0 \in I \) using assms, group0_3_L5 unfolding Ideal_defIf the rules are satisfied, then we have an ideal
theorem (in ring0) ideal_intro:
assumes \( \forall x\in I.\ \forall y\in I.\ x + y\in I \), \( \forall x\in I.\ \forall y\in R.\ x\cdot y \in I \), \( \forall x\in I.\ \forall y\in R.\ y\cdot x \in I \), \( I \subseteq R \), \( I\neq 0 \)
shows \( I\triangleleft R \)proofThe simplest way to obtain an ideal from others is the intersection, since the intersection of arbitrary collection of ideals is an ideal.
theorem (in ring0) intersection_ideals:
assumes \( \forall J\in \mathcal{J} .\ (J \triangleleft R) \), \( \mathcal{J} \neq 0 \)
shows \( (\bigcap \mathcal{J} ) \triangleleft R \) using assms, ideal_dest_mult, subgroup_inter unfolding Ideal_defIn particular, intersection of two ideals is an ideal.
corollary (in ring0) inter_two_ideals:
assumes \( I\triangleleft R \), \( J\triangleleft R \)
shows \( (I\cap J) \triangleleft R \)proofFrom any set, we may construct the minimal ideal containing that set
definition (in ring0)
\( X\subseteq R \Longrightarrow \langle X\rangle _I \equiv \bigcap \{I\in \mathcal{I} .\ X \subseteq I\} \)
The ideal generated by a set is an ideal
corollary (in ring0) generated_ideal_is_ideal:
assumes \( X\subseteq R \)
shows \( \langle X\rangle _I \triangleleft R \)proofThe ideal generated by a set is contained in any ideal containing the set.
corollary (in ring0) generated_ideal_small:
assumes \( X\subseteq I \), \( I \triangleleft R \)
shows \( \langle X\rangle _I \subseteq I \)proofThe ideal generated by a set contains the set.
corollary (in ring0) generated_ideal_contains_set:
assumes \( X\subseteq R \)
shows \( X\subseteq \langle X\rangle _I \) using assms, ring_self_ideal, generatedIdeal_defTo be able to show properties of an ideal generated by a set, we have the following induction result
lemma (in ring0) induction_generated_ideal:
assumes \( X\neq 0 \), \( X\subseteq R \), \( \forall y\in R.\ \forall z\in R.\ \forall q\in \langle X\rangle _I.\ P(q) \longrightarrow P(y\cdot q\cdot z) \), \( \forall y\in R.\ \forall z\in R.\ P(y) \wedge P(z) \longrightarrow P(y + z) \), \( \forall x\in X.\ P(x) \)
shows \( \forall y\in \langle X\rangle _I.\ P(y) \)proofAn ideal is very particular with the elements it may contain. If it contains the neutral element of multiplication then it is in fact the whole ring and not a proper subset.
theorem (in ring0) ideal_with_one:
assumes \( I\triangleleft R \), \( 1 \in I \)
shows \( I = R \) using assms, ideal_dest_subset, ideal_dest_mult(2), Ring_ZF_1_L3(5)The only ideal containing an invertible element is the whole ring.
theorem (in ring0) ideal_with_unit:
assumes \( I\triangleleft R \), \( x\in I \), \( \exists y\in R.\ y\cdot x = 1 \vee x\cdot y =1 \)
shows \( I = R \) using assms, ideal_with_one unfolding Ideal_defThe previous result drives us to define what a maximal ideal would be: an ideal such that any bigger ideal is the whole ring:
definition (in ring0)
\( I\triangleleft _mR \equiv I\triangleleft R \wedge I\neq R \wedge (\forall J\in \mathcal{I} .\ I\subseteq J \wedge J\neq R \longrightarrow I=J) \)
Before delving into maximal ideals, lets define some operation on ideals that are useful when formulating some proofs. The product ideal of ideals \(I,J\) is the smallest ideal containing all products of elements from \(I\) and \(J\):
definition (in ring0)
\( I\triangleleft R \Longrightarrow J\triangleleft R \Longrightarrow I\cdot _IJ \equiv \langle M(I\times J)\rangle _I \)
The sum ideal of ideals is the smallest ideal containg both \(I\) and \(J\):
definition (in ring0)
\( I\triangleleft R \Longrightarrow J\triangleleft R \Longrightarrow I+_IJ \equiv \langle I\cup J\rangle _I \)
Sometimes we may need to sum an arbitrary number of ideals, and not just two.
definition (in ring0)
\( \mathcal{J} \subseteq \mathcal{I} \Longrightarrow \oplus _I\mathcal{J} \equiv \langle \bigcup \mathcal{J} \rangle _I \)
Each component of the sum of ideals is contained in the sum.
lemma (in ring0) comp_in_sum_ideals:
assumes \( I\triangleleft R \) and \( J\triangleleft R \)
shows \( I \subseteq I+_IJ \) and \( J \subseteq I+_IJ \) and \( I\cup J \subseteq I+_IJ \)proofEvery element in the arbitrary sum of ideals is generated by only a finite subset of those ideals
lemma (in ring0) sum_ideals_finite_sum:
assumes \( \mathcal{J} \subseteq \mathcal{I} \), \( s\in (\oplus _I\mathcal{J} ) \)
shows \( \exists \mathcal{T} \in \text{FinPow}(\mathcal{J} ).\ s\in (\oplus _I\mathcal{T} ) \)proofBy definition of product of ideals and of an ideal itself, it follows that the product of ideals is an ideal contained in the intersection
theorem (in ring0) product_in_intersection:
assumes \( I\triangleleft R \), \( J\triangleleft R \)
shows \( I\cdot _IJ \subseteq I\cap J \) and \( (I\cdot _IJ)\triangleleft R \) and \( M(I\times J) \subseteq I\cdot _IJ \)proofWe will show now that the sum of ideals is no more that the sum of the ideal elements.
lemma (in ring0) sum_elements:
assumes \( I \triangleleft R \), \( J \triangleleft R \), \( x\in I \), \( y\in J \)
shows \( x + y \in I+_IJ \)proofFor two ideals the set containing all sums of their elements is also an ideal.
lemma (in ring0) sum_elements_is_ideal:
assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (A(I\times J)) \triangleleft R \)proofThe set of all sums of elements of two ideals is their sum ideal i.e. the ideal generated by their union.
corollary (in ring0) sum_ideals_is_sum_elements:
assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (A(I \times J)) = I+_IJ \)proofThe sum ideal of two ideals is indeed an ideal.
corollary (in ring0) sum_ideals_is_ideal:
assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (I+_IJ) \triangleleft R \) using assms, sum_ideals_is_sum_elements, sum_elements_is_ideal, ideal_dest_subsetThe operation of taking the sum of ideals is commutative.
corollary (in ring0) sum_ideals_commute:
assumes \( I\triangleleft R \), \( J\triangleleft R \)
shows \( (I +_I J) = (J +_I I) \)proofNow that we know what the product of ideals is, we are able to define what a prime ideal is:
definition (in ring0)
\( P\triangleleft _pR \equiv P\triangleleft R \wedge P\neq R \wedge (\forall I\in \mathcal{I} .\ \forall J\in \mathcal{I} .\ I\cdot _IJ \subseteq P \longrightarrow (I\subseteq P \vee J\subseteq P)) \)
Any maximal ideal is a prime ideal.
theorem (in ring0) maximal_is_prime:
assumes \( Q\triangleleft _mR \)
shows \( Q\triangleleft _pR \)proofIn case of non-commutative rings, the zero divisor concept is too constrictive. For that we define the following concept of a prime ring. Note that in case that our ring is commutative, this is equivalent to having no zero divisors (there is no of that proof yet).
definition
\( \text{IsAring}(R,A,M) \Longrightarrow [R,A,M]\text{ is a prime ring } \equiv \) \( (\forall x\in R.\ \forall y\in R.\ (\forall z\in R.\ M\langle M\langle x,z\rangle ,y\rangle = \text{ TheNeutralElement}(R,A)) \longrightarrow \) \( x=\text{ TheNeutralElement}(R,A) \vee y=\text{ TheNeutralElement}(R,A)) \)
Prime rings appear when the zero ideal is prime.
lemma (in ring0) prime_ring_zero_prime_ideal:
assumes \( [R,A,M]\text{ is a prime ring } \), \( R\neq \{ 0 \} \)
shows \( \{ 0 \} \triangleleft _pR \)proofIf the trivial ideal \(\{ 0\}\) is a prime ideal then the ring is a prime ring.
lemma (in ring0) zero_prime_ideal_prime_ring:
assumes \( \{ 0 \}\triangleleft _pR \)
shows \( [R,A,M]\text{ is a prime ring } \)proofWe can actually use this definition of a prime ring as a condition to check for prime ideals.
theorem (in ring0) equivalent_prime_ideal:
assumes \( P\triangleleft _pR \)
shows \( \forall x\in R.\ \forall y\in R.\ (\forall z\in R.\ x\cdot z\cdot y\in P) \longrightarrow x\in P \vee y\in P \)proofThe next theorem provides a sufficient condition for a proper ideal \(P\) to be a prime ideal: if for all \(x,y\in R\) it holds that for all \(z\in R\) \(x z y \in P\) only when \(x\in P\) or \(y\in P\) then \(P\) is a prime ideal.
theorem (in ring0) equivalent_prime_ideal_2:
assumes \( \forall x\in R.\ \forall y\in R.\ (\forall z\in R.\ x\cdot z\cdot y\in P) \longrightarrow x\in P \vee y\in P \), \( P\triangleleft R \), \( P\neq R \)
shows \( P\triangleleft _pR \)proofSimilar to groups, rings can be quotiented by normal additive subgroups; but to keep the structure of the multiplicative monoid we need extra structure in the normal subgroup. This extra structure is given by the ideal.
Any ideal is a normal subgroup.
lemma (in ring0) ideal_normal_add_subgroup:
assumes \( I\triangleleft R \)
shows \( \text{IsAnormalSubgroup}(R,A,I) \) using ringAssum, assms, Group_ZF_2_4_L6(1) unfolding IsAring_def, Ideal_defEach ring \(R\) is a group with respect to its addition operation. By the lemma ideal_normal_add_subgroup above an ideal \(I\subseteq R\) is a normal subgroup of that group. Therefore we can define the quotient of the ring \(R\) by the ideal \(I\) using the notion of quotient of a group by its normal subgroup, see section Normal subgroups and quotient groups in Group_ZF_2 theory.
definition (in ring0)
\( I\triangleleft R \Longrightarrow \text{QuotientBy}(I) \equiv R// \text{QuotientGroupRel}(R,A,I) \)
Any ideal gives rise to an equivalence relation
corollary (in ring0) ideal_equiv_rel:
assumes \( I\triangleleft R \)
shows \( \text{equiv}(R, \text{QuotientGroupRel}(R,A,I)) \) using assms, Group_ZF_2_4_L3 unfolding Ideal_defAny quotient by an ideal is an abelian group.
lemma (in ring0) quotientBy_add_group:
assumes \( I\triangleleft R \)
shows \( \text{IsAgroup}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R, A, I)) \) and \( \text{QuotientGroupOp}(R, A, I) \text{ is commutative on } \text{QuotientBy}(I) \) using assms, ringAssum, ideal_normal_add_subgroup, Group_ZF_2_4_T1, Group_ZF_2_4_L6(2), QuotientBy_def, QuotientBy_def, Ideal_def unfolding IsAring_defSince every ideal is a normal subgroup of the additive group of the ring it is quite obvious that that addition is congruent with respect to the quotient group relation. The next lemma shows something a little bit less obvious: that the multiplicative ring operation is also congruent with the quotient relation and gives rise to a monoid in the quotient.
lemma (in ring0) quotientBy_mul_monoid:
assumes \( I\triangleleft R \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(R, A, I),M) \) and \( \text{IsAmonoid}( \text{QuotientBy}(I), \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)) \)proofEach ideal defines an equivalence relation on the ring with which both addition and multiplication are congruent. The next couple of definitions set up notation for the operations that result from projecting the ring addition and multiplication on the quotient space. We will write \(x+_I y \) to denote the result of the quotient operation (with respect to an ideal I) on classes \(x\) and \(y\)
definition (in ring0)
\( x\{ + I\}y \equiv \text{QuotientGroupOp}(R, A, I)\langle x,y\rangle \)
Similarly \(x \cdot_I y\) is the value of the projection of the ring's multiplication on the quotient space defined by the an ideal \(I\), which as we know is a normal subgroup of the ring with addition.
definition (in ring0)
\( x\{\cdot I\}y \equiv \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)\langle x,y\rangle \)
The value of the projection of taking the negative in the ring on the quotient space defined by an ideal \(I\) will be denoted \( \{ - I\} \).
definition (in ring0)
\( \{ - I\}y \equiv \text{GroupInv}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R, A, I))(y) \)
Subtraction in the quotient space is defined by the \( + I \) and \( - I \) operations in the obvious way.
definition (in ring0)
\( x\{ - I\}y \equiv x\{ + I\}(\{ - I\}y) \)
The class of the zero of the ring with respect to the equivalence relation defined by an ideal \(I\) will be denoted \(0_I\).
definition (in ring0)
\( 0 _I \equiv \text{QuotientGroupRel}(R,A,I)\{ 0 \} \)
Similarly the class of the neutral element of multiplication in the ring with respect to the equivalence relation defined by an ideal \(I\) will be denoted \(1_I\).
definition (in ring0)
\( 1 _I \equiv \text{QuotientGroupRel}(R,A,I)\{1 \} \)
The class of the sum of two units of the ring will be denoted \(2_I\).
definition (in ring0)
\( 2 _I \equiv \text{QuotientGroupRel}(R,A,I)\{ 2 \} \)
The value of the projection of the ring multiplication onto the the quotient space defined by an ideal \(I\) on a pair of the same classes \(\langle x,x\rangle\) is denoted \(x^{2I}\).
definition (in ring0)
\( x^{2^I} \equiv \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)\langle x,x\rangle \)
The class of the additive neutral element of the ring (i.e. \(0\)) with respect to the equivalence relation defined by an ideal is the neutral of the projected addition.
lemma (in ring0) neutral_quotient:
assumes \( I\triangleleft R \)
shows \( \text{QuotientGroupRel}(R,A,I)\{ 0 \} = \text{ TheNeutralElement}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R,A,I)) \) using ringAssum, assms, Group_ZF_2_4_L5B, ideal_normal_add_subgroup, QuotientBy_def unfolding IsAring_defSimilarly, the class of the multiplicative neutral element of the ring (i.e. \(1\)) with respect to the equivalence relation defined by an ideal is the neutral of the projected multiplication.
lemma (in ring0) one_quotient:
assumes \( I\triangleleft R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( r\{1 \} = \text{ TheNeutralElement}( \text{QuotientBy}(I), \text{ProjFun2}(R,r,M)) \) using ringAssum, assms, Group_ZF_2_2_L1, ideal_equiv_rel, quotientBy_mul_monoid, QuotientBy_def unfolding IsAring_defThe class of \(2\) (i.e. \(1+1\)) is the same as the value of the addition projected on the quotient space on the pair of classes of \(1\).
lemma (in ring0) two_quotient:
assumes \( I\triangleleft R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( r\{ 2 \} = \text{QuotientGroupOp}(R,A,I)\langle r\{1 \},r\{1 \}\rangle \) using ringAssum, assms, EquivClass_1_L10, ideal_equiv_rel, Ring_ZF_1_L2(2), Ring_ZF_1_L2(2), Group_ZF_2_4_L5A, ideal_normal_add_subgroup unfolding IsAring_def, QuotientGroupOp_defThe class of a square of an element of the ring is the same as the result of the projected multiplication on the pair of classes of the element.
lemma (in ring0) sqrt_quotient:
assumes \( I\triangleleft R \), \( x\in R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( r\{x^2\} = \text{ProjFun2}(R,r, M)\langle r\{x\},r\{x\}\rangle \) using assms, EquivClass_1_L10, ideal_equiv_rel, quotientBy_mul_monoid(1)The projection of the ring addition is distributive with respect to the projection of the ring multiplication.
lemma (in ring0) quotientBy_distributive:
assumes \( I\triangleleft R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( \text{IsDistributive}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R,A,I), \text{ProjFun2}(R,r,M)) \) using ringAssum, assms, QuotientBy_def, ring_oper_distr(1), Ring_ZF_1_L4(1,3), quotientBy_mul_monoid(1), EquivClass_1_L10, ideal_equiv_rel, Group_ZF_2_4_L5A, ideal_normal_add_subgroup, ring_oper_distr(2) unfolding quotient_def, QuotientGroupOp_def, IsAring_def, IsDistributive_defThe quotient group is a ring with the quotient multiplication.
theorem (in ring0) quotientBy_is_ring:
assumes \( I\triangleleft R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( \text{IsAring}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R, A, I), \text{ProjFun2}(R,r, M)) \) using assms, quotientBy_distributive, quotientBy_mul_monoid(2), quotientBy_add_group unfolding IsAring_defAn important property satisfied by many important rings is being Noetherian: every ideal is finitely generated.
definition (in ring0)
\( I\triangleleft R \Longrightarrow I \text{ is finitely generated } \equiv \exists S\in \text{FinPow}(R).\ I = \langle S\rangle _I \)
For Noetherian rings the arbitrary sum can be reduced to the sum of a finite subset of the initial set of ideals
theorem (in ring0) sum_ideals_noetherian:
assumes \( \forall I\in \mathcal{I} .\ (I\text{ is finitely generated }) \), \( \mathcal{J} \subseteq \mathcal{I} \)
shows \( \exists \mathcal{T} \in \text{FinPow}(\mathcal{J} ).\ (\oplus _I\mathcal{J} ) = (\oplus _I\mathcal{T} ) \)proofassumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( \text{IsAsubgroup}(H,P) \) and \( a\in H \), \( b\in H \)
shows \( a\cdot b \in H \)assumes \( \text{IsAsubgroup}(H,P) \) and \( h\in H \)
shows \( h^{-1}\in H \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( 1 \in H \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot b = a\cdot ( - b) \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot b = a\cdot ( - b) \)assumes \( H\neq 0 \) and \( H\subseteq G \) and \( H \text{ is closed under } P \) and \( \forall x\in H.\ x^{-1} \in H \)
shows \( \text{IsAsubgroup}(H,P) \)assumes \( I \triangleleft R \), \( x\in I \), \( y\in R \)
shows \( x\cdot y \in I \), \( y\cdot x \in I \)assumes \( \mathcal{H} \neq 0 \) and \( \forall H\in \mathcal{H} .\ \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAsubgroup}(\bigcap \mathcal{H} ,P) \)assumes \( \forall J\in \mathcal{J} .\ (J \triangleleft R) \), \( \mathcal{J} \neq 0 \)
shows \( (\bigcap \mathcal{J} ) \triangleleft R \)assumes \( I \triangleleft R \)
shows \( I \subseteq R \)assumes \( X\subseteq R \)
shows \( X\subseteq \langle X\rangle _I \)assumes \( X\subseteq R \)
shows \( \langle X\rangle _I \triangleleft R \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( I \triangleleft R \), \( x\in I \), \( y\in I \)
shows \( x + y \in I \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( I \triangleleft R \), \( x\in I \)
shows \( ( - x) \in I \)assumes \( X\subseteq I \), \( I \triangleleft R \)
shows \( \langle X\rangle _I \subseteq I \)assumes \( I \triangleleft R \), \( x\in I \), \( y\in R \)
shows \( x\cdot y \in I \), \( y\cdot x \in I \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( I\triangleleft R \), \( 1 \in I \)
shows \( I = R \)assumes \( X\neq 0 \), \( X\subseteq R \), \( \forall y\in R.\ \forall z\in R.\ \forall q\in \langle X\rangle _I.\ P(q) \longrightarrow P(y\cdot q\cdot z) \), \( \forall y\in R.\ \forall z\in R.\ P(y) \wedge P(z) \longrightarrow P(y + z) \), \( \forall x\in X.\ P(x) \)
shows \( \forall y\in \langle X\rangle _I.\ P(y) \)assumes \( I\triangleleft R \), \( J\triangleleft R \)
shows \( (I\cap J) \triangleleft R \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( I \triangleleft R \)
shows \( 0 \in I \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + (b + c) = a + b + c \), \( a - (b + c) = a - b - c \), \( a - (b - c) = a - b + c \)assumes \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \)
shows \( a - b - c - d = a - d - b - c \), \( a + b + c - d = a - d + b + c \), \( a + b - c - d = a - c + (b - d) \), \( a + b + c + d = a + c + (b + d) \)assumes \( a\in R \), \( b\in R \)
shows \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( a - ( - b) = a + b \)assumes \( I \triangleleft R \), \( J \triangleleft R \), \( x\in I \), \( y\in J \)
shows \( x + y \in I+_IJ \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (A(I\times J)) \triangleleft R \)assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (A(I \times J)) = I+_IJ \)assumes \( I\triangleleft R \) and \( J\triangleleft R \)
shows \( I \subseteq I+_IJ \) and \( J \subseteq I+_IJ \) and \( I\cup J \subseteq I+_IJ \)assumes \( I \triangleleft R \), \( J \triangleleft R \)
shows \( (I+_IJ) \triangleleft R \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \)assumes \( I \triangleleft R \), \( x\in I \), \( y\in R \)
shows \( x\cdot y \in I \), \( y\cdot x \in I \)assumes \( I\triangleleft R \), \( J\triangleleft R \)
shows \( I\cdot _IJ \subseteq I\cap J \) and \( (I\cdot _IJ)\triangleleft R \) and \( M(I\times J) \subseteq I\cdot _IJ \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)assumes \( \text{IsAgroup}(G,P) \) and \( P \text{ is commutative on } G \) and \( \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \), \( \text{QuotientGroupOp}(G,P,H) \text{ is commutative on } (G// \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( I\triangleleft R \)
shows \( \text{IsAnormalSubgroup}(R,A,I) \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{IsAgroup}(G// \text{QuotientGroupRel}(G,P,H), \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \) and \( P \text{ is commutative on } G \) and \( \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \), \( \text{QuotientGroupOp}(G,P,H) \text{ is commutative on } (G// \text{QuotientGroupRel}(G,P,H)) \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \)assumes \( I \triangleleft R \), \( x\in I \), \( y\in R \)
shows \( x\cdot y \in I \), \( y\cdot x \in I \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \)
shows \( \text{IsAmonoid}(G//r,F) \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( e = \text{ TheNeutralElement}(G,P) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{IsAmonoid}(G,f) \) and \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \) and \( e = \text{ TheNeutralElement}(G,f) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r,F) \)assumes \( I\triangleleft R \)
shows \( \text{equiv}(R, \text{QuotientGroupRel}(R,A,I)) \)assumes \( I\triangleleft R \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(R, A, I),M) \) and \( \text{IsAmonoid}( \text{QuotientBy}(I), \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)) \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \)assumes \( I\triangleleft R \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(R, A, I),M) \) and \( \text{IsAmonoid}( \text{QuotientBy}(I), \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)) \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( I\triangleleft R \)
defines \( r \equiv \text{QuotientGroupRel}(R,A,I) \)
shows \( \text{IsDistributive}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R,A,I), \text{ProjFun2}(R,r,M)) \)assumes \( I\triangleleft R \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(R, A, I),M) \) and \( \text{IsAmonoid}( \text{QuotientBy}(I), \text{ProjFun2}(R, \text{QuotientGroupRel}(R,A,I), M)) \)assumes \( I\triangleleft R \)
shows \( \text{IsAgroup}( \text{QuotientBy}(I), \text{QuotientGroupOp}(R, A, I)) \) and \( \text{QuotientGroupOp}(R, A, I) \text{ is commutative on } \text{QuotientBy}(I) \)assumes \( n\in nat \)
shows \( \text{ the axiom of } n \text{ choice holds } \)assumes \( \mathcal{J} \subseteq \mathcal{I} \), \( s\in (\oplus _I\mathcal{J} ) \)
shows \( \exists \mathcal{T} \in \text{FinPow}(\mathcal{J} ).\ s\in (\oplus _I\mathcal{T} ) \)assumes \( f:X\rightarrow Y \) and \( N \in Fin(X) \)
shows \( f(N) \in Fin(Y) \)