In this theory file we consider the properties of integers that are needed for the real numbers construction in Real_ZF series.
In this section we study basic properties of slopes - the integer almost homomorphisms. The general definition of an almost homomorphism \(f\) on a group \(G\) written in additive notation requires the set \(\{f(m+n) - f(m) - f(n): m,n\in G\}\) to be finite. In this section we establish a definition that is equivalent for integers: that for all integer \(m,n\) we have \(|f(m+n) - f(m) - f(n)| \leq L\) for some \(L\).
First we extend the standard notation for integers with notation related to slopes. We define slopes as almost homomorphisms on the additive group of integers. The set of slopes is denoted \( \mathcal{S} \). We also define "positive" slopes as those that take infinite number of positive values on positive integers. We write \( \delta (s,m,n) \) to denote the homomorphism difference of \(s\) at \(m,n\) (i.e the expression \(s(m+n) - s(m) - s(n)\)). We denote \( \text{ max}\delta (s) \) the maximum absolute value of homomorphism difference of \(s\) as \(m,n\) range over integers. If \(s\) is a slope, then the set of homomorphism differences is finite and this maximum exists. In Group_ZF_3 we define the equivalence relation on almost homomorphisms using the notion of a quotient group relation and use "\( \approx \)" to denote it. As here this symbol seems to be hogged by the standard Isabelle, we will use "\( \sim \)" instead "\( \approx \)". We show in this section that \(s\sim r\) iff for some \(L\) we have \(|s(m)-r(m)| \leq L\) for all integer \(m\). The "\( + \)" denotes the first operation on almost homomorphisms. For slopes this is addition of functions defined in the natural way. The "\( \circ \)" symbol denotes the second operation on almost homomorphisms (see Group_ZF_3 for definition), defined for the group of integers. In short "\( \circ \)" is the composition of slopes. The "\( ^{-1} \)" symbol acts as an infix operator that assigns the value \(\min\{n\in Z_+: p\leq f(n)\}\) to a pair (of sets) \(f\) and \(p\). In application \(f\) represents a function defined on \(Z_+\) and \(p\) is a positive integer. We choose this notation because we use it to construct the right inverse in the ring of classes of slopes and show that this ring is in fact a field. To study the homomorphism difference of the function defined by \(p\mapsto f^{-1}(p)\) we introduce the symbol \( \varepsilon \) defined as \(\varepsilon(f,\langle m,n \rangle ) = f^{-1}(m+n)-f^{-1}(m)-f^{-1}(n)\). Of course the intention is to use the fact that \(\varepsilon(f,\langle m,n \rangle )\) is the homomorphism difference of the function \(g\) defined as \(g(m) = f^{-1}(m)\). We also define \(\gamma (s,m,n)\) as the expression \(\delta(f,m,-n)+s(0)-\delta (f,n,-n)\). This is useful because of the identity \(f(m-n) = \gamma (m,n) + f(m)-f(n)\) that allows to obtain bounds on the value of a slope at the difference of of two integers. For every integer \(m\) we introduce notation \(m^S\) defined by \(m^E(n)=m\cdot n\). The mapping \(q\mapsto q^S\) embeds integers into \( \mathcal{S} \) preserving the order, (that is, maps positive integers into \( \mathcal{S} _+ \)).
locale int1 = int0 +
defines \( \mathcal{S} \equiv \text{AlmostHoms}(\mathbb{Z} ,IntegerAddition) \)
defines \( \mathcal{S} _+ \equiv \{s\in \mathcal{S} .\ s(\mathbb{Z} _+) \cap \mathbb{Z} _+ \notin Fin(\mathbb{Z} )\} \)
defines \( \delta (s,m,n) \equiv s(m + n) - s(m) - s(n) \)
defines \( \text{ max}\delta (s) \equiv \text{Maximum}(IntegerOrder,\{abs(\delta (s,m,n)).\ \langle m,n\rangle \in \mathbb{Z} \times \mathbb{Z} \}) \)
defines \( AlEqRel \equiv \text{QuotientGroupRel}(\mathcal{S} , \text{AlHomOp1}(\mathbb{Z} ,IntegerAddition), \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} )) \)
defines \( s \sim r \equiv \langle s,r\rangle \in AlEqRel \)
defines \( s + r \equiv \text{AlHomOp1}(\mathbb{Z} ,IntegerAddition)\langle s,r\rangle \)
defines \( s \circ r \equiv \text{AlHomOp2}(\mathbb{Z} ,IntegerAddition)\langle s,r\rangle \)
defines \( - s \equiv \text{GroupInv}(\mathbb{Z} ,IntegerAddition)\circ s \)
defines \( f^{-1}(p) \equiv \text{Minimum}(IntegerOrder,\{n\in \mathbb{Z} _+.\ p \leq f(n)\}) \)
defines \( \varepsilon (f,p) \equiv f^{-1}(\text{fst}(p) + \text{snd}(p)) - f^{-1}(\text{fst}(p)) - f^{-1}(\text{snd}(p)) \)
defines \( \gamma (s,m,n) \equiv \delta (s,m, - n) - \delta (s,n, - n) + s( 0 ) \)
defines \( m^S \equiv \{\langle n,m\cdot n\rangle .\ n\in \mathbb{Z} \} \)
We can use theorems proven in the group1 context.
lemma (in int1) Int_ZF_2_1_L1:
shows \( group1(\mathbb{Z} ,IntegerAddition) \) using Int_ZF_1_T2, group1_axioms.intro, group1_defType information related to the homomorphism difference expression.
lemma (in int1) Int_ZF_2_1_L2:
assumes \( f\in \mathcal{S} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( m + n \in \mathbb{Z} \), \( f(m + n) \in \mathbb{Z} \), \( f(m) \in \mathbb{Z} \), \( f(n) \in \mathbb{Z} \), \( f(m) + f(n) \in \mathbb{Z} \), \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) \in \mathbb{Z} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L4AType information related to the homomorphism difference expression.
lemma (in int1) Int_ZF_2_1_L2A:
assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( m + n \in \mathbb{Z} \), \( f(m + n) \in \mathbb{Z} \), \( f(m) \in \mathbb{Z} \), \( f(n) \in \mathbb{Z} \), \( f(m) + f(n) \in \mathbb{Z} \), \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) \in \mathbb{Z} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L4Slopes map integers into integers.
lemma (in int1) Int_ZF_2_1_L2B:
assumes A1: \( f\in \mathcal{S} \) and A2: \( m\in \mathbb{Z} \)
shows \( f(m) \in \mathbb{Z} \)proofThe homomorphism difference in multiplicative notation is defined as the expression \(s(m\cdot n)\cdot(s(m)\cdot s(n))^{-1}\). The next lemma shows that in the additive notation used for integers the homomorphism difference is \(f(m+n) - f(m) - f(n)\) which we denote as \( \delta (f,m,n) \).
lemma (in int1) Int_ZF_2_1_L3:
assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) = \delta (f,m,n) \) using assms, Int_ZF_2_1_L2A, Int_ZF_1_T2, group0_4_L4A, HomDiff_defThe next formula restates the definition of the homomorphism difference to express the value an almost homomorphism on a sum.
lemma (in int1) Int_ZF_2_1_L3A:
assumes A1: \( f\in \mathcal{S} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m + n) = f(m) + (f(n) + \delta (f,m,n)) \)proofThe homomorphism difference of any integer function is integer.
lemma (in int1) Int_ZF_2_1_L3B:
assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \delta (f,m,n) \in \mathbb{Z} \) using assms, Int_ZF_2_1_L2A, Int_ZF_2_1_L3The value of an integer function at a sum expressed in terms of \( \delta \).
lemma (in int1) Int_ZF_2_1_L3C:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m + n) = \delta (f,m,n) + f(n) + f(m) \)proofThe next lemma presents two ways the set of homomorphism differences can be written.
lemma (in int1) Int_ZF_2_1_L4:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( \{abs( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,x)).\ x \in \mathbb{Z} \times \mathbb{Z} \} =\) \( \{abs(\delta (f,m,n)).\ \langle m,n\rangle \in \mathbb{Z} \times \mathbb{Z} \} \)proofIf \(f\) maps integers into integers and for all \(m,n\in Z\) we have \(|f(m+n) - f(m) - f(n)| \leq L\) for some \(L\), then \(f\) is a slope.
lemma (in int1) Int_ZF_2_1_L5:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ abs(\delta (f,m,n)) \leq L \)
shows \( f\in \mathcal{S} \)proofThe absolute value of homomorphism difference of a slope \(s\) does not exceed \( \text{ max}\delta (s) \).
lemma (in int1) Int_ZF_2_1_L7:
assumes A1: \( s\in \mathcal{S} \) and A2: \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( abs(\delta (s,m,n)) \leq \text{ max}\delta (s) \), \( \delta (s,m,n) \in \mathbb{Z} \), \( \text{ max}\delta (s) \in \mathbb{Z} \), \( ( - \text{ max}\delta (s)) \leq \delta (s,m,n) \)proofA useful estimate for the value of a slope at \(0\), plus some type information for slopes.
lemma (in int1) Int_ZF_2_1_L8:
assumes A1: \( s\in \mathcal{S} \)
shows \( abs(s( 0 )) \leq \text{ max}\delta (s) \), \( 0 \leq \text{ max}\delta (s) \), \( abs(s( 0 )) \in \mathbb{Z} \), \( \text{ max}\delta (s) \in \mathbb{Z} \), \( abs(s( 0 )) + \text{ max}\delta (s) \in \mathbb{Z} \)proofInt Group_ZF_3.thy we show that finite range functions valued in an abelian group form a normal subgroup of almost homomorphisms. This allows to define the equivalence relation between almost homomorphisms as the relation resulting from dividing by that normal subgroup. Then we show in Group_ZF_3_4_L12 that if the difference of \(f\) and \(g\) has finite range (actually \(f(n)\cdot g(n)^{-1}\) as we use multiplicative notation in Group_ZF_3.thy), then \(f\) and \(g\) are equivalent. The next lemma translates that fact into the notation used in int1 context.
lemma (in int1) Int_ZF_2_1_L9:
assumes A1: \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and A2: \( \forall m\in \mathbb{Z} .\ abs(s(m) - r(m)) \leq L \)
shows \( s \sim r \)proofA neccessary condition for two slopes to be almost equal. For slopes the definition postulates the set \(\{f(m)-g(m): m\in Z\}\) to be finite. This lemma shows that this implies that \(|f(m)-g(m)|\) is bounded (by some integer) as \(m\) varies over integers. We also mention here that in this context \( s \sim r \) implies that both \(s\) and \(r\) are slopes.
lemma (in int1) Int_ZF_2_1_L9A:
assumes \( s \sim r \)
shows \( \exists L\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ abs(s(m) - r(m)) \leq L \), \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_4_L11, Int_ZF_1_3_L20AA, QuotientGroupRel_defLet's recall that the relation of almost equality is an equivalence relation on the set of slopes.
lemma (in int1) Int_ZF_2_1_L9B:
shows \( AlEqRel \subseteq \mathcal{S} \times \mathcal{S} \), \( \text{equiv}(\mathcal{S} ,AlEqRel) \) using Int_ZF_2_1_L1, Group_ZF_3_3_L3Another version of sufficient condition for two slopes to be almost equal: if the difference of two slopes is a finite range function, then they are almost equal.
lemma (in int1) Int_ZF_2_1_L9C:
assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( s + ( - r) \in \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} ) \)
shows \( s \sim r \), \( r \sim s \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L13, Group_ZF_3_4_L12AIf two slopes are almost equal, then the difference has finite range. This is the inverse of Int_ZF_2_1_L9C.
lemma (in int1) Int_ZF_2_1_L9D:
assumes A1: \( s \sim r \)
shows \( s + ( - r) \in \text{FinRangeFunctions}(\mathbb{Z} ,\mathbb{Z} ) \)proofWhat is the value of a composition of slopes?
lemma (in int1) Int_ZF_2_1_L10:
assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in \mathbb{Z} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_4_L2Composition of slopes is a slope.
lemma (in int1) Int_ZF_2_1_L11:
assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \)
shows \( s\circ r \in \mathcal{S} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_4_T1Negative of a slope is a slope.
lemma (in int1) Int_ZF_2_1_L12:
assumes \( s\in \mathcal{S} \)
shows \( - s \in \mathcal{S} \) using assms, Int_ZF_1_T2, Int_ZF_2_1_L1, Group_ZF_3_2_L13What is the value of a negative of a slope?
lemma (in int1) Int_ZF_2_1_L12A:
assumes \( s\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( ( - s)(m) = - (s(m)) \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L5What are the values of a sum of slopes?
lemma (in int1) Int_ZF_2_1_L12B:
assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( (s + r)(m) = s(m) + r(m) \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L12Sum of slopes is a slope.
lemma (in int1) Int_ZF_2_1_L12C:
assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \)
shows \( s + r \in \mathcal{S} \) using assms, Int_ZF_2_1_L1, Group_ZF_3_2_L16A simple but useful identity.
lemma (in int1) Int_ZF_2_1_L13:
assumes \( s\in \mathcal{S} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( s(n\cdot m) + (s(m) + \delta (s,n\cdot m,m)) = s((n + 1 )\cdot m) \) using assms, Int_ZF_1_1_L5, Int_ZF_2_1_L2B, Int_ZF_1_2_L9, Int_ZF_1_2_L7Some estimates for the absolute value of a slope at the opposite integer.
lemma (in int1) Int_ZF_2_1_L14:
assumes A1: \( s\in \mathcal{S} \) and A2: \( m\in \mathbb{Z} \)
shows \( s( - m) = s( 0 ) - \delta (s,m, - m) - s(m) \), \( abs(s(m) + s( - m)) \leq 2 \cdot \text{ max}\delta (s) \), \( abs(s( - m)) \leq 2 \cdot \text{ max}\delta (s) + abs(s(m)) \), \( s( - m) \leq abs(s( 0 )) + \text{ max}\delta (s) - s(m) \)proofAn identity that expresses the value of an integer function at the opposite integer in terms of the value of that function at the integer, zero, and the homomorphism difference. We have a similar identity in Int_ZF_2_1_L14, but over there we assume that \(f\) is a slope.
lemma (in int1) Int_ZF_2_1_L14A:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \)
shows \( f( - m) = ( - \delta (f,m, - m)) + f( 0 ) - f(m) \)proofThe next lemma allows to use the expression \( maxf(f, 0 .\ .\ M-1) \). Recall that \( maxf(f,A) \) is the maximum of (function) \(f\) on (the set) \(A\).
lemma (in int1) Int_ZF_2_1_L15:
assumes \( s\in \mathcal{S} \) and \( M \in \mathbb{Z} _+ \)
shows \( maxf(s, 0 .\ .\ (M - 1 )) \in \mathbb{Z} \), \( \forall n \in 0 .\ .\ (M - 1 ).\ s(n) \leq maxf(s, 0 .\ .\ (M - 1 )) \), \( minf(s, 0 .\ .\ (M - 1 )) \in \mathbb{Z} \), \( \forall n \in 0 .\ .\ (M - 1 ).\ minf(s, 0 .\ .\ (M - 1 )) \leq s(n) \) using assms, AlmostHoms_def, Int_ZF_1_5_L6, Int_ZF_1_4_L2A lower estimate for the value of a slope at \(nM+k\).
lemma (in int1) Int_ZF_2_1_L16:
assumes A1: \( s\in \mathcal{S} \) and A2: \( m\in \mathbb{Z} \) and A3: \( M \in \mathbb{Z} _+ \) and A4: \( k \in 0 .\ .\ (M - 1 ) \)
shows \( s(m\cdot M) + (minf(s, 0 .\ .\ (M - 1 )) - \text{ max}\delta (s)) \leq s(m\cdot M + k) \)proofIdentity is a slope.
lemma (in int1) Int_ZF_2_1_L17:
shows \( id(\mathbb{Z} ) \in \mathcal{S} \) using Int_ZF_2_1_L1, Group_ZF_3_4_L15Simple identities about (absolute value of) homomorphism differences.
lemma (in int1) Int_ZF_2_1_L18:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(f(n) + f(m) - f(m + n)) = abs(\delta (f,m,n)) \), \( abs(f(m) + f(n) - f(m + n)) = abs(\delta (f,m,n)) \), \( ( - (f(m))) - f(n) + f(m + n) = \delta (f,m,n) \), \( ( - (f(n))) - f(m) + f(m + n) = \delta (f,m,n) \), \( abs(( - f(m + n)) + f(m) + f(n)) = abs(\delta (f,m,n)) \)proofSome identities about the homomorphism difference of odd functions.
lemma (in int1) Int_ZF_2_1_L19:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall x\in \mathbb{Z} .\ ( - f( - x)) = f(x) \) and A3: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(\delta (f, - m,m + n)) = abs(\delta (f,m,n)) \), \( abs(\delta (f, - n,m + n)) = abs(\delta (f,m,n)) \), \( \delta (f,n, - (m + n)) = \delta (f,m,n) \), \( \delta (f,m, - (m + n)) = \delta (f,m,n) \), \( abs(\delta (f, - m, - n)) = abs(\delta (f,m,n)) \)proofRecall that \(f\) is a slope iff \(f(m+n)-f(m)-f(n)\) is bounded as \(m,n\) ranges over integers. The next lemma is the first step in showing that we only need to check this condition as \(m,n\) ranges over positive intergers. Namely we show that if the condition holds for positive integers, then it holds if one integer is positive and the second one is nonnegative.
lemma (in int1) Int_ZF_2_1_L20:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and A3: \( m\in \mathbb{Z} ^+ \), \( n\in \mathbb{Z} _+ \)
shows \( 0 \leq L \), \( abs(\delta (f,m,n)) \leq L + abs(f( 0 )) \)proofIf the slope condition holds for all pairs of integers such that one integer is positive and the second one is nonnegative, then it holds when both integers are nonnegative.
lemma (in int1) Int_ZF_2_1_L21:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall a\in \mathbb{Z} ^+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and A3: \( n\in \mathbb{Z} ^+ \), \( m\in \mathbb{Z} ^+ \)
shows \( abs(\delta (f,m,n)) \leq L + abs(f( 0 )) \)proofIf the homomorphism difference is bounded on \( \mathbb{Z} _+\times \mathbb{Z} _+ \), then it is bounded on \( \mathbb{Z} ^+\times \mathbb{Z} ^+ \).
lemma (in int1) Int_ZF_2_1_L22:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \exists M.\ \forall m\in \mathbb{Z} ^+.\ \forall n\in \mathbb{Z} ^+.\ abs(\delta (f,m,n)) \leq M \)proofFor odd functions we can do better than in Int_ZF_2_1_L22: if the homomorphism difference of \(f\) is bounded on \( \mathbb{Z} ^+\times \mathbb{Z} ^+ \), then it is bounded on \( \mathbb{Z} \times \mathbb{Z} \), hence \(f\) is a slope. Loong prof by splitting the \( \mathbb{Z} \times \mathbb{Z} \) into six subsets.
lemma (in int1) Int_ZF_2_1_L23:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and A3: \( \forall x\in \mathbb{Z} .\ ( - f( - x)) = f(x) \)
shows \( f\in \mathcal{S} \)proofIf the homomorphism difference of a function defined on positive integers is bounded, then the odd extension of this function is a slope.
lemma (in int1) Int_ZF_2_1_L24:
assumes A1: \( f:\mathbb{Z} _+\rightarrow \mathbb{Z} \) and A2: \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \in \mathcal{S} \)proofType information related to \(\gamma\).
lemma (in int1) Int_ZF_2_1_L25:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \delta (f,m, - n) \in \mathbb{Z} \), \( \delta (f,n, - n) \in \mathbb{Z} \), \( ( - \delta (f,n, - n)) \in \mathbb{Z} \), \( f( 0 ) \in \mathbb{Z} \), \( \gamma (f,m,n) \in \mathbb{Z} \)proofA couple of formulae involving \(f(m-n)\) and \(\gamma(f,m,n)\).
lemma (in int1) Int_ZF_2_1_L26:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m - n) = \gamma (f,m,n) + f(m) - f(n) \), \( f(m - n) = \gamma (f,m,n) + (f(m) - f(n)) \), \( f(m - n) + (f(n) - \gamma (f,m,n)) = f(m) \)proofA formula expressing the difference between \(f(m-n-k)\) and \(f(m)-f(n)-f(k)\) in terms of \(\gamma\).
lemma (in int1) Int_ZF_2_1_L26A:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( f(m - n - k) - (f(m) - f(n) - f(k)) = \gamma (f,m - n,k) + \gamma (f,m,n) \)proofIf \(s\) is a slope, then \(\gamma (s,m,n)\) is uniformly bounded.
lemma (in int1) Int_ZF_2_1_L27:
assumes A1: \( s\in \mathcal{S} \)
shows \( \exists L\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ abs(\gamma (s,m,n)) \leq L \)proofIf \(s\) is a slope, then \(s(m) \leq s(m-1) + M\), where \(L\) does not depend on \(m\).
lemma (in int1) Int_ZF_2_1_L28:
assumes A1: \( s\in \mathcal{S} \)
shows \( \exists M\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ s(m) \leq s(m - 1 ) + M \)proofIf \(s\) is a slope, then the difference between \(s(m-n-k)\) and \(s(m)-s(n)-s(k)\) is uniformly bounded.
lemma (in int1) Int_ZF_2_1_L29:
assumes A1: \( s\in \mathcal{S} \)
shows \( \exists M\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ \forall k\in \mathbb{Z} .\ abs(s(m - n - k) - (s(m) - s(n) - s(k))) \leq M \)proofIf \(s\) is a slope, then we can find integers \(M,K\) such that \(s(m-n-k) \leq s(m)-s(n)-s(k) + M\) and \(s(m)-s(n)-s(k) + K \leq s(m-n-k)\), for all integer \(m,n,k\).
lemma (in int1) Int_ZF_2_1_L30:
assumes A1: \( s\in \mathcal{S} \)
shows \( \exists M\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ \forall k\in \mathbb{Z} .\ s(m - n - k) \leq s(m) - s(n) - s(k) + M \), \( \exists K\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ \forall k\in \mathbb{Z} .\ s(m) - s(n) - s(k) + K \leq s(m - n - k) \)proofBy definition functions \(f,g\) are almost equal if \(f-g\)* is bounded. In the next lemma we show it is sufficient to check the boundedness on positive integers.
lemma (in int1) Int_ZF_2_1_L31:
assumes A1: \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and A2: \( \forall m\in \mathbb{Z} _+.\ abs(s(m) - r(m)) \leq L \)
shows \( s \sim r \)proofA sufficient condition for an odd slope to be almost equal to identity: If for all positive integers the value of the slope at \(m\) is between \(m\) and \(m\) plus some constant independent of \(m\), then the slope is almost identity.
lemma (in int1) Int_ZF_2_1_L32:
assumes A1: \( s\in \mathcal{S} \), \( M\in \mathbb{Z} \) and A2: \( \forall m\in \mathbb{Z} _+.\ m \leq s(m) \wedge s(m) \leq m + M \)
shows \( s \sim id(\mathbb{Z} ) \)proofA lemma about adding a constant to slopes. This is actually proven in Group_ZF_3_5_L1, in Group_ZF_3.thy here we just refer to that lemma to show it in notation used for integers. Unfortunately we have to use raw set notation in the proof.
lemma (in int1) Int_ZF_2_1_L33:
assumes A1: \( s\in \mathcal{S} \) and A2: \( c\in \mathbb{Z} \) and A3: \( r = \{\langle m,s(m) + c\rangle .\ m\in \mathbb{Z} \} \)
shows \( \forall m\in \mathbb{Z} .\ r(m) = s(m) + c \), \( r\in \mathcal{S} \), \( s \sim r \)proofComposition of slopes is not commutative. However, as we show in this section if \(f\) and \(g\) are slopes then the range of \(f\circ g - g\circ f\) is bounded. This allows to show that the multiplication of real numbers is commutative.
Two useful estimates.
lemma (in int1) Int_ZF_2_2_L1:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(f((p + 1 )\cdot q) - (p + 1 )\cdot f(q)) \leq abs(\delta (f,p\cdot q,q)) + abs(f(p\cdot q) - p\cdot f(q)) \), \( abs(f((p - 1 )\cdot q) - (p - 1 )\cdot f(q)) \leq abs(\delta (f,(p - 1 )\cdot q,q)) + abs(f(p\cdot q) - p\cdot f(q)) \)proofIf \(f\) is a slope, then \(|f(p\cdot q)-p\cdot f(q)|\leq (|p|+1)\cdot\)\( \text{ max}\delta (f) \). The proof is by induction on \(p\) and the next lemma is the induction step for the case when \(0\leq p\).
lemma (in int1) Int_ZF_2_2_L2:
assumes A1: \( f\in \mathcal{S} \) and A2: \( 0 \leq p \), \( q\in \mathbb{Z} \) and A3: \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)
shows \( abs(f((p + 1 )\cdot q) - (p + 1 )\cdot f(q)) \leq (abs(p + 1 ) + 1 )\cdot \text{ max}\delta (f) \)proofIf \(f\) is a slope, then \(|f(p\cdot q)-p\cdot f(q)|\leq (|p|+1)\cdot\)\( \text{ max}\delta \). The proof is by induction on \(p\) and the next lemma is the induction step for the case when \(p\leq 0\).
lemma (in int1) Int_ZF_2_2_L3:
assumes A1: \( f\in \mathcal{S} \) and A2: \( p\leq 0 \), \( q\in \mathbb{Z} \) and A3: \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)
shows \( abs(f((p - 1 )\cdot q) - (p - 1 )\cdot f(q)) \leq (abs(p - 1 ) + 1 )\cdot \text{ max}\delta (f) \)proofIf \(f\) is a slope, then \(|f(p\cdot q)-p\cdot f(q)|\leq (|p|+1)\cdot\)\( \text{ max}\delta \)\((f)\). Proof by cases on \(0 \leq p\).
lemma (in int1) Int_ZF_2_2_L4:
assumes A1: \( f\in \mathcal{S} \) and A2: \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)proofThe next elegant result is Lemma 7 in the Arthan's paper \cite{Arthan2004}.
lemma (in int1) Arthan_Lem_7:
assumes A1: \( f\in \mathcal{S} \) and A2: \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(q\cdot f(p) - p\cdot f(q)) \leq (abs(p) + abs(q) + 2 )\cdot \text{ max}\delta (f) \)proofThis is Lemma 8 in the Arthan's paper.
lemma (in int1) Arthan_Lem_8:
assumes A1: \( f\in \mathcal{S} \)
shows \( \exists A B.\ A\in \mathbb{Z} \wedge B\in \mathbb{Z} \wedge (\forall p\in \mathbb{Z} .\ abs(f(p)) \leq A\cdot abs(p) + B) \)proofIf \(f\) and \(g\) are slopes, then \(f\circ g\) is equivalent (almost equal) to \(g\circ f\). This is Theorem 9 in Arthan's paper \cite{Arthan2004}.
theorem (in int1) Arthan_Th_9:
assumes A1: \( f\in \mathcal{S} \), \( g\in \mathcal{S} \)
shows \( f\circ g \sim g\circ f \)proofassumes \( s \in AH \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \)assumes \( s:G\rightarrow G \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( m + n \in \mathbb{Z} \), \( f(m + n) \in \mathbb{Z} \), \( f(m) \in \mathbb{Z} \), \( f(n) \in \mathbb{Z} \), \( f(m) + f(n) \in \mathbb{Z} \), \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) \in \mathbb{Z} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot c = c\cdot a\cdot b \), \( a^{-1}\cdot (b^{-1}\cdot c^{-1})^{-1} = (a\cdot (b\cdot c)^{-1})^{-1} \), \( a\cdot (b\cdot c)^{-1} = a\cdot b^{-1}\cdot c^{-1} \), \( a\cdot (b\cdot c^{-1})^{-1} = a\cdot b^{-1}\cdot c \), \( a\cdot b^{-1}\cdot c^{-1} = a\cdot c^{-1}\cdot b^{-1} \)assumes \( f\in \mathcal{S} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( m + n \in \mathbb{Z} \), \( f(m + n) \in \mathbb{Z} \), \( f(m) \in \mathbb{Z} \), \( f(n) \in \mathbb{Z} \), \( f(m) + f(n) \in \mathbb{Z} \), \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) \in \mathbb{Z} \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,\langle m,n\rangle ) = \delta (f,m,n) \)assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \), \( z\in \mathbb{Z} \)
shows \( x + y + z = x + (y + z) \), \( x\cdot y\cdot z = x\cdot (y\cdot z) \)assumes \( s\in AH \) and \( m\in G \), \( n\in G \)
shows \( s(m\cdot n) = s(m)\cdot s(n)\cdot \delta (s,\langle m,n\rangle ) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b \in \mathbb{Z} \), \( a - b \in \mathbb{Z} \), \( a\cdot b \in \mathbb{Z} \), \( a + b = b + a \), \( a\cdot b = b\cdot a \), \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot ( - b) = a\cdot b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \) and \( a = b - c - d \)
shows \( d = b - a - c \), \( d = ( - a) + b - c \), \( b = a + d + c \)assumes \( \forall x\in X.\ \forall y\in Y.\ a(\langle x,y\rangle ) = b(x,y) \)
shows \( \{a(p).\ p \in X\times Y\} = \{b(x,y).\ \langle x,y\rangle \in X\times Y\} \)assumes \( r \text{ is total on } G \) and \( \forall x\in X.\ b(x)\in G \wedge \vert b(x)\vert \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)assumes \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} \)assumes \( \forall y\in Y.\ b(y) \in Z \) and \( \{a(x).\ x\in X\} \in Fin(Y) \)
shows \( \{b(a(x)).\ x\in X\} \in Fin(Z) \)assumes \( \text{IsLinOrder}(X,r) \) and \( A \in Fin(X) \) and \( A\neq 0 \)
shows \( \text{Maximum}(r,A) \in A \), \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( \{abs( \text{HomDiff}(\mathbb{Z} ,IntegerAddition,f,x)).\ x \in \mathbb{Z} \times \mathbb{Z} \} =\) \( \{abs(\delta (f,m,n)).\ \langle m,n\rangle \in \mathbb{Z} \times \mathbb{Z} \} \)assumes \( m \leq n \)
shows \( m \ \$ \leq n \), \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)assumes \( m\in \mathbb{Z} \) and \( abs(m) \leq n \)
shows \( ( - n) \leq m \), \( m \leq n \), \( m \in ( - n).\ .\ n \), \( 0 \leq n \)assumes \( f\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( f(m) \in \mathbb{Z} \)assumes \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} ^+ \), \( 0 \leq abs(m) \)assumes \( a \in \mathbb{Z} \)
shows \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( 0 \cdot a = 0 \), \( a\cdot 0 = 0 \), \( ( - a) \in \mathbb{Z} \), \( ( - ( - a)) = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \)assumes \( m\in \mathbb{Z} \)
shows \( abs( - m) = abs(m) \)assumes \( s\in \mathcal{S} \) and \( n\in \mathbb{Z} \), \( m\in \mathbb{Z} \)
shows \( abs(\delta (s,m,n)) \leq \text{ max}\delta (s) \), \( \delta (s,m,n) \in \mathbb{Z} \), \( \text{ max}\delta (s) \in \mathbb{Z} \), \( ( - \text{ max}\delta (s)) \leq \delta (s,m,n) \)assumes \( m\leq n \), \( n\leq k \)
shows \( m\leq k \)assumes \( \forall x\in X.\ b(x) \in \mathbb{Z} \wedge abs(b(x)) \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},IntegerOrder) \)assumes \( s\in AH \), \( r\in AH \) and \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)
shows \( s\cong r \)assumes \( s\cong r \)
shows \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)assumes \( \{b(x).\ x\in \mathbb{Z} \} \in Fin(\mathbb{Z} ) \)
shows \( \exists L\in \mathbb{Z} .\ \forall x\in \mathbb{Z} .\ abs(b(x)) \leq L \)assumes \( s\in AH \)
shows \( \text{GroupInv}(AH,Op1)(s) = \text{GroupInv}(G,P)\circ s \), \( \text{GroupInv}(AH,Op1)(s) \in AH \), \( \text{GroupInv}(G,P)\circ s \in AH \)assumes \( s\in AH \), \( r\in AH \) and \( s\bullet ( \text{GroupInv}(AH,Op1)(r)) \in FR \)
shows \( s\cong r \), \( r\cong s \)assumes \( s\cong r \)
shows \( s\bullet ( \text{GroupInv}(AH,Op1)(r)) \in FR \)assumes \( s \sim r \)
shows \( \exists L\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ abs(s(m) - r(m)) \leq L \), \( s\in \mathcal{S} \), \( r\in \mathcal{S} \)assumes \( s\in AH \), \( r\in AH \) and \( m\in G \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in G \)assumes \( s\in AH \), \( r\in AH \)
shows \( \text{Composition}(G)\langle s,r\rangle \in AH \), \( s\circ r \in AH \)assumes \( s \in AH \) and \( n\in G \)
shows \( (\sim s)(n) = (s(n))^{-1} \)assumes \( s\in AH \), \( r\in AH \) and \( n\in G \)
shows \( (s\bullet r)(n) = s(n)\cdot r(n) \)assumes \( s \in AH \), \( r \in AH \)
shows \( s\bullet r \in AH \), \( s\bullet (\sim r) \in AH \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (a - b) + (b - c) = a - c \), \( (a - b) - (a - c) = c - b \), \( a + (b + (c - a - b)) = c \), \( ( - a) - b + c = c - a - b \), \( ( - b) - a + c = c - a - b \), \( ( - (( - a) + b + c)) = a - b - c \), \( a + b + c - a = b + c \), \( a + b - (a + c) = b - c \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a\cdot b = (a - 1 )\cdot b + b \), \( a\cdot (b + 1 ) = a\cdot b + a \), \( (b + 1 )\cdot a = b\cdot a + a \), \( (b + 1 )\cdot a = a + b\cdot a \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m - n) \leq abs(n) + abs(m) \), \( abs(m - n) \leq abs(m) + abs(n) \)assumes \( s\in \mathcal{S} \)
shows \( abs(s( 0 )) \leq \text{ max}\delta (s) \), \( 0 \leq \text{ max}\delta (s) \), \( abs(s( 0 )) \in \mathbb{Z} \), \( \text{ max}\delta (s) \in \mathbb{Z} \), \( abs(s( 0 )) + \text{ max}\delta (s) \in \mathbb{Z} \)assumes \( a\leq c \), \( b\leq c \)
shows \( a + b \leq 2 \cdot c \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b - a = b \), \( a + (b - a) = b \), \( a + b - b = a \), \( a - b + b = a \), \( ( - a) + (a + b) = b \), \( a + (b - a) = b \), \( ( - b) + (a + b) = a \), \( a - (b + a) = - b \), \( a - (a + b) = - b \), \( a - (a - b) = b \), \( a - b - a = - b \), \( a - b - (a + b) = ( - b) - b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( abs(a - b - c) \leq abs(a) + abs(b) + abs(c) \)assumes \( k \in \mathbb{Z} \) and \( m \leq n \)
shows \( m + k \leq n + k \), \( k + m\leq k + n \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m + n \leq abs(m) + abs(n) \), \( m - n \leq abs(m) + abs(n) \), \( ( - m) + n \leq abs(m) + abs(n) \), \( ( - m) - n \leq abs(m) + abs(n) \)assumes \( n \in \mathbb{Z} _+ \)
shows \( 0 \leq n - 1 \), \( 0 \in 0 .\ .\ (n - 1 ) \), \( 0 .\ .\ (n - 1 ) \subseteq \mathbb{Z} \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( a\leq b \)
shows \( maxf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ f(c) \leq maxf(f,a.\ .\ b) \), \( \exists c \in a.\ .\ b.\ f(c) = maxf(f,a.\ .\ b) \), \( minf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ minf(f,a.\ .\ b) \leq f(c) \), \( \exists c \in a.\ .\ b.\ f(c) = minf(f,a.\ .\ b) \)assumes \( s\in \mathcal{S} \) and \( M \in \mathbb{Z} _+ \)
shows \( maxf(s, 0 .\ .\ (M - 1 )) \in \mathbb{Z} \), \( \forall n \in 0 .\ .\ (M - 1 ).\ s(n) \leq maxf(s, 0 .\ .\ (M - 1 )) \), \( minf(s, 0 .\ .\ (M - 1 )) \in \mathbb{Z} \), \( \forall n \in 0 .\ .\ (M - 1 ).\ minf(s, 0 .\ .\ (M - 1 )) \leq s(n) \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a + c \leq b + d \), \( a - d \leq b - c \)assumes \( f\in \mathcal{S} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m + n) = f(m) + (f(n) + \delta (f,m,n)) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( ( - (a - b - c)) = c + b - a \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(f(n) + f(m) - f(m + n)) = abs(\delta (f,m,n)) \), \( abs(f(m) + f(n) - f(m + n)) = abs(\delta (f,m,n)) \), \( ( - (f(m))) - f(n) + f(m + n) = \delta (f,m,n) \), \( ( - (f(n))) - f(m) + f(m + n) = \delta (f,m,n) \), \( abs(( - f(m + n)) + f(m) + f(n)) = abs(\delta (f,m,n)) \)assumes \( f: \mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( (\forall a\in \mathbb{Z} .\ f( - a) = ( - f(a))) \longleftrightarrow (\forall a\in \mathbb{Z} .\ ( - (f( - a))) = f(a)) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \delta (f,m,n) \in \mathbb{Z} \)assumes \( m\leq k \) and \( 0 \leq n \)
shows \( m \leq k + n \), \( m \leq n + k \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and \( m\in \mathbb{Z} ^+ \), \( n\in \mathbb{Z} _+ \)
shows \( 0 \leq L \), \( abs(\delta (f,m,n)) \leq L + abs(f( 0 )) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} ^+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and \( n\in \mathbb{Z} ^+ \), \( m\in \mathbb{Z} ^+ \)
shows \( abs(\delta (f,m,n)) \leq L + abs(f( 0 )) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \)
shows \( \exists M.\ \forall m\in \mathbb{Z} ^+.\ \forall n\in \mathbb{Z} ^+.\ abs(\delta (f,m,n)) \leq M \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( 0 \leq a \wedge 0 \leq b \vee a\leq 0 \wedge b\leq 0 \vee \) \( a\leq 0 \wedge 0 \leq b \wedge 0 \leq a + b \vee a\leq 0 \wedge 0 \leq b \wedge a + b \leq 0 \vee \) \( 0 \leq a \wedge b\leq 0 \wedge 0 \leq a + b \vee 0 \leq a \wedge b\leq 0 \wedge a + b \leq 0 \)assumes \( 0 \leq m \)
shows \( m\in \mathbb{Z} ^+ \) and \( abs(m) = m \)assumes \( k \leq 0 \)
shows \( 0 \leq ( - k) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall x\in \mathbb{Z} .\ ( - f( - x)) = f(x) \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(\delta (f, - m,m + n)) = abs(\delta (f,m,n)) \), \( abs(\delta (f, - n,m + n)) = abs(\delta (f,m,n)) \), \( \delta (f,n, - (m + n)) = \delta (f,m,n) \), \( \delta (f,m, - (m + n)) = \delta (f,m,n) \), \( abs(\delta (f, - m, - n)) = abs(\delta (f,m,n)) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ abs(\delta (f,m,n)) \leq L \)
shows \( f\in \mathcal{S} \)assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \)
shows \( \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) : \mathbb{Z} \rightarrow \mathbb{Z} \)assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a + b \in \mathbb{Z} _+ \)assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a \in \mathbb{Z} _+ \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( g(a) = f(a) \)assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a\in \mathbb{Z} \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( ( - g( - a)) = g(a) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} _+.\ \forall b\in \mathbb{Z} _+.\ abs(\delta (f,a,b)) \leq L \) and \( \forall x\in \mathbb{Z} .\ ( - f( - x)) = f(x) \)
shows \( f\in \mathcal{S} \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( \delta (f,m, - n) \in \mathbb{Z} \), \( \delta (f,n, - n) \in \mathbb{Z} \), \( ( - \delta (f,n, - n)) \in \mathbb{Z} \), \( f( 0 ) \in \mathbb{Z} \), \( \gamma (f,m,n) \in \mathbb{Z} \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m + n) = \delta (f,m,n) + f(n) + f(m) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \)
shows \( f( - m) = ( - \delta (f,m, - m)) + f( 0 ) - f(m) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( a + (b - c) + d = a + b + d - c \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b - c + (c - a) = b \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( f(m - n) = \gamma (f,m,n) + f(m) - f(n) \), \( f(m - n) = \gamma (f,m,n) + (f(m) - f(n)) \), \( f(m - n) + (f(n) - \gamma (f,m,n)) = f(m) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b - c + (c - b) = a \), \( a + (b + c) - c = a + b \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( abs(m + n + k) \leq abs(m) + abs(n) + abs(k) \)assumes \( s\in \mathcal{S} \)
shows \( \exists L\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ abs(\gamma (s,m,n)) \leq L \)assumes \( m\in \mathbb{Z} \)
shows \( m \leq abs(m) \), \( ( - m) \leq abs(m) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m + n)\leq abs(m) + abs(n) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( f(m - n - k) - (f(m) - f(n) - f(k)) = \gamma (f,m - n,k) + \gamma (f,m,n) \)assumes \( s\in \mathcal{S} \)
shows \( \exists M\in \mathbb{Z} .\ \forall m\in \mathbb{Z} .\ \forall n\in \mathbb{Z} .\ \forall k\in \mathbb{Z} .\ abs(s(m - n - k) - (s(m) - s(n) - s(k))) \leq M \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( abs(m - n) \leq k \)
shows \( abs(m) \leq abs(n) + k \), \( m - k \leq n \), \( m \leq n + k \), \( n - k \leq m \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( \text{Maximum}(IntegerOrder,\{a,b,c\}) \in \mathbb{Z} \), \( a \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \), \( b \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \), \( c \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \)assumes \( m\in \mathbb{Z} \)
shows \( m= 0 \vee m\in \mathbb{Z} _+ \vee ( - m) \in \mathbb{Z} _+ \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( abs(a - c) \leq abs(a + b) + abs(c + d) + abs(b - d) \)assumes \( s\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( s( - m) = s( 0 ) - \delta (s,m, - m) - s(m) \), \( abs(s(m) + s( - m)) \leq 2 \cdot \text{ max}\delta (s) \), \( abs(s( - m)) \leq 2 \cdot \text{ max}\delta (s) + abs(s(m)) \), \( s( - m) \leq abs(s( 0 )) + \text{ max}\delta (s) - s(m) \)assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( \forall m\in \mathbb{Z} .\ abs(s(m) - r(m)) \leq L \)
shows \( s \sim r \)assumes \( a\leq b \) and \( c\in \mathbb{Z} \) and \( b\leq a + c \)
shows \( abs(b - a) \leq c \)assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( \forall m\in \mathbb{Z} _+.\ abs(s(m) - r(m)) \leq L \)
shows \( s \sim r \)assumes \( s \in AH \) and \( c\in G \) and \( r = \{\langle x,s(x)\cdot c\rangle .\ x\in G\} \)
shows \( \forall x\in G.\ r(x) = s(x)\cdot c \), \( r \in AH \), \( s \cong r \)assumes \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \)
shows \( a - (b + 1 )\cdot c = (a - d - c) + (d - b\cdot c) \), \( a + b + (c + d) = a + b + c + d \), \( a + b + (c + d) = a + (b + c) + d \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( a - (b - 1 )\cdot c = (d - b\cdot c) - (d - a - c) \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(f((p + 1 )\cdot q) - (p + 1 )\cdot f(q)) \leq abs(\delta (f,p\cdot q,q)) + abs(f(p\cdot q) - p\cdot f(q)) \), \( abs(f((p - 1 )\cdot q) - (p - 1 )\cdot f(q)) \leq abs(\delta (f,(p - 1 )\cdot q,q)) + abs(f(p\cdot q) - p\cdot f(q)) \)assumes \( b\leq b_1 \), \( c\leq c_1 \) and \( a\leq b + c \)
shows \( a\leq b_1 + c_1 \)assumes \( a\in \mathbb{Z} \) and \( 0 \leq b \)
shows \( a + (abs(b) + 1 )\cdot a = (abs(b + 1 ) + 1 )\cdot a \)assumes \( a\in \mathbb{Z} \) and \( b\leq 0 \)
shows \( a + (abs(b) + 1 )\cdot a = (abs(b - 1 ) + 1 )\cdot a \)assumes \( f\in \mathcal{S} \) and \( 0 \leq p \), \( q\in \mathbb{Z} \) and \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)
shows \( abs(f((p + 1 )\cdot q) - (p + 1 )\cdot f(q)) \leq (abs(p + 1 ) + 1 )\cdot \text{ max}\delta (f) \)assumes \( i\leq k \) and \( Q(i) \) and \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( Q(k) \)assumes \( m\in \mathbb{Z} \) and \( \neg ( 0 \leq m) \)
shows \( m\leq 0 \), \( 0 \leq ( - m) \), \( m\neq 0 \)assumes \( f\in \mathcal{S} \) and \( p\leq 0 \), \( q\in \mathbb{Z} \) and \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)
shows \( abs(f((p - 1 )\cdot q) - (p - 1 )\cdot f(q)) \leq (abs(p - 1 ) + 1 )\cdot \text{ max}\delta (f) \)assumes \( k\leq i \) and \( P(i) \) and \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n - 1 ) \)
shows \( P(k) \)assumes \( f\in \mathcal{S} \) and \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(f(p\cdot q) - p\cdot f(q)) \leq (abs(p) + 1 )\cdot \text{ max}\delta (f) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m - n) = abs(n - m) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( abs(m) \leq k \), \( abs(n) \leq l \)
shows \( abs(m + n) \leq k + l \), \( abs(m - n) \leq k + l \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (a + 1 )\cdot b + (c + 1 )\cdot b = (c + a + 2 )\cdot b \)assumes \( f\in \mathcal{S} \) and \( p\in \mathbb{Z} \), \( q\in \mathbb{Z} \)
shows \( abs(q\cdot f(p) - p\cdot f(q)) \leq (abs(p) + abs(q) + 2 )\cdot \text{ max}\delta (f) \)assumes \( a\in \mathbb{Z} \)
shows \( a + 1 + 2 = a + 3 \), \( a = 2 \cdot a - a \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( abs(a\cdot b) + (abs(a) + c)\cdot d = (d + abs(b))\cdot abs(a) + c\cdot d \)assumes \( f\in \mathcal{S} \)
shows \( \exists A B.\ A\in \mathbb{Z} \wedge B\in \mathbb{Z} \wedge (\forall p\in \mathbb{Z} .\ abs(f(p)) \leq A\cdot abs(p) + B) \)assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \) and \( m\in \mathbb{Z} \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in \mathbb{Z} \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( e\in \mathbb{Z} \) and \( abs(a\cdot b - c) \leq d \), \( abs(b\cdot a - e) \leq f \)
shows \( abs(c - e) \leq f + d \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (b - c)\cdot a = a\cdot b - a\cdot c \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( k \leq L \)
shows \( m + k + n \leq m + L + n \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \), \( x\in \mathbb{Z} \)
shows \( (x + (a\cdot x + b) + c)\cdot d = d\cdot (a + 1 )\cdot x + (b\cdot d + c\cdot d) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \), \( x\in \mathbb{Z} \)
shows \( (a\cdot x + b) + (c\cdot x + d) = (a + c)\cdot x + (b + d) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( abs(a\cdot b) = abs(a)\cdot abs(b) \)assumes \( \forall q\in \mathbb{Z} .\ F(q) \in \mathbb{Z} \) and \( \forall q\in \mathbb{Z} .\ F(q)\cdot abs(q) \leq A\cdot abs(q) + B \) and \( A\in \mathbb{Z} \), \( B\in \mathbb{Z} \)
shows \( \exists L.\ \forall p\in \mathbb{Z} .\ F(p) \leq L \)assumes \( s\in \mathcal{S} \), \( r\in \mathcal{S} \)
shows \( s\circ r \in \mathcal{S} \)