Suppose \(T\) is a topology, \(r\) is an equivalence relation on \(X = \bigcup T\) and \(P_r : X \rightarrow X/r\) maps an element of \(X\) to its equivalence class \(r\{x \}\). Then we can define a topology (on \(X/r\)) by taking the collection of those subsets \(V\) of \(X/r\) for which the inverse image by the projection \(P_r\) is in \(T\). This is the weakest topology on \(X/r\) such that \(P_r\) is continuous. In this theory we consider a seemingly more general situation where we start with a topology \(T\) on \(X=\bigcup T\) and a surjection \(f:X\rightarrow Y\) and define a topology on \(Y\) by taking those subsets \(V\) of \(Y\) for which the inverse image by the mapping \(f\) is in \(T\). Turns out that this construction is in a way equivalent to the previous one as the topology defined this way is homeomorphic to the topology defined by the equivalence relation \(r_f\) on \(X\) that relates two elements of \(X\) if \(f\) has the same value on them.
In this section we define the quotient topology generated by a topology \(T\) and a surjection \(f:\bigcup T \rightarrow Y\), and show its basic properties.
For a topological space \(X=\bigcup T\) and a surjection \(f:X\rightarrow Y\) we define \( \text{ quotient topology in } Y\text{ by } f \) as the collection of subsets of \(Y\) whose inverse images by \(f\) are open.
definition (in topology0)
\( f\in \text{surj}(\bigcup T,Y) \Longrightarrow \text{ quotient topology in } Y\text{ by } f \equiv \) \( \{U\in Pow(Y).\ f^{-1}U\in T\} \)
Outside of the topology0 context we will indicate also the generating topology and write \( \text{ quotient topology in } Y\text{ by } f\text{ from } X \).
abbreviation
\( \text{ quotient topology in } Y\text{ by } f\text{ from } T \equiv topology0.\ \text{QuotientTop}(T,Y,f) \)
The quotient topology is indeed a topology.
theorem (in topology0) quotientTop_is_top:
assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( (\text{ quotient topology in } Y\text{ by } f) \text{ is a topology } \)proofThe quotient function is continuous.
lemma (in topology0) quotient_func_cont:
assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( \text{IsContinuous}(T,(\text{ quotient topology in } Y\text{ by } f),f) \) unfolding IsContinuous_def using QuotientTop_def, assmsOne of the important properties of this topology, is that a function from the quotient space is continuous iff the composition with the quotient function is continuous.
theorem (in two_top_spaces0) cont_quotient_top:
assumes \( h\in \text{surj}(\bigcup \tau _1,Y) \), \( g:Y\rightarrow \bigcup \tau _2 \), \( \text{IsContinuous}(\tau _1,\tau _2,g\circ h) \)
shows \( \text{IsContinuous}((\text{ quotient topology in } Y\text{ by } h\text{ from } \tau _1),\tau _2,g) \)proofThe underlying set of the quotient topology is \(Y\).
lemma (in topology0) total_quo_func:
assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( (\bigcup (\text{ quotient topology in } Y\text{ by } f))=Y \)proofIn this section we will show that the quotient topologies come from an equivalence relation.
The quotient projection \(b\mapsto r\{ b\}\) is a function that maps the domain of the relation to the quotient. Note we do not need to assume that \(r\) is an equivalence relation.
lemma quotient_proj_fun:
shows \( \{\langle b,r\{b\}\rangle .\ b\in A\}:A\rightarrow A//r \) unfolding Pi_def, function_def, domain_def unfolding quotient_defThe quotient projection is a surjection. Again \(r\) does not need to be an equivalence relation here
lemma quotient_proj_surj:
shows \( \{\langle b,r\{b\}\rangle .\ b\in A\}\in \text{surj}(A,A//r) \)proofThe inverse image of a subset \(U\) of the quotient by the quotient projection is the union of \(U\). Note since \(U\) is a subset of \(A/r\) it is a collection of equivalence classes.
lemma preim_equi_proj:
assumes \( U\subseteq A//r \), \( \text{equiv}(A,r) \)
shows \( \{\langle b,r\{b\}\rangle .\ b\in A\}^{-1}(U) = \bigcup U \)proofNow we define what a quotient topology from an equivalence relation is:
definition (in topology0)
\( \text{equiv}(\bigcup T,r)\Longrightarrow (\text{ quotient by } r) \equiv \text{ quotient topology in } (\bigcup T)//r\text{ by } \{\langle b,r\{b\}\rangle .\ b\in \bigcup T\} \)
Outside of the topology0 context we need to indicate the original topology.
abbreviation
\( T \text{ quotient by } r \equiv topology0.\ \text{EquivQuo}(T,r) \)
First, another description of the topology (more intuitive):
theorem (in topology0) quotient_equiv_rel:
assumes \( \text{equiv}(\bigcup T,r) \)
shows \( (\text{ quotient by }r)=\{U\in Pow((\bigcup T)//r).\ \bigcup U\in T\} \)proofWe apply previous results to this topology.
theorem (in topology0) total_quo_equi:
assumes \( \text{equiv}(\bigcup T,r) \)
shows \( \bigcup (\text{ quotient by }r)=(\bigcup T)//r \) using total_quo_func, quotient_proj_surj, EquivQuo_def, assmsThe quotient by an equivalence relation is indeed a topology.
theorem (in topology0) equiv_quo_is_top:
assumes \( \text{equiv}(\bigcup T,r) \)
shows \( (\text{ quotient by }r)\text{ is a topology } \) using quotientTop_is_top, quotient_proj_surj, EquivQuo_def, assmsThe next theorem is the main result of this section: all quotient topologies arise from an equivalence relation given by the quotient function \(f:X\to Y\). This means that any quotient topology is homeomorphic to a topology given by an equivalence relation quotient.
theorem (in topology0) equiv_quotient_top:
assumes \( f\in \text{surj}(\bigcup T,Y) \)
defines \( r\equiv \{\langle x,y\rangle \in \bigcup T\times \bigcup T.\ f(x)=f(y)\} \)
defines \( g\equiv \{\langle y,f^{-1}\{y\}\rangle .\ y\in Y\} \)
shows \( \text{equiv}(\bigcup T,r) \) and \( \text{IsAhomeomorphism}((\text{ quotient topology in }Y\{by\}f),(\text{ quotient by }r),g) \)proofThe mapping \(\langle b,c \rangle \mapsto \langle r\{ a\},r\{ b\}\rangle\) is a function that maps the product of the carrier by itself to the product of the quotients. Note \(r\) does not have to be an equivalence relation.
lemma product_equiv_rel_fun:
shows \( \{\langle \langle b,c\rangle ,\langle r\{b\},r\{c\}\rangle \rangle .\ \langle b,c\rangle \in \bigcup T\times \bigcup T\}:(\bigcup T\times \bigcup T)\rightarrow ((\bigcup T)//r\times (\bigcup T)//r) \)proofThe mapping \(\langle b,c \rangle \mapsto \langle r\{ a\},r\{ b\}\rangle\) is a surjection of the product of the carrier by itself onto the carrier of the product topology. Again \(r\) does not have to be an equivalence relation for this.
lemma (in topology0) prod_equiv_rel_surj:
shows \( \{\langle \langle b,c\rangle ,\langle r\{b\},r\{c\}\rangle \rangle .\ \langle b,c\rangle \in \bigcup T\times \bigcup T\}\in \text{surj}(\bigcup (T\times _tT),((\bigcup T)//r\times (\bigcup T)//r)) \)proofThe product quotient projection (i.e. the mapping the mapping \(\langle b,c \rangle \mapsto \langle r\{ a\},r\{ b\}\rangle\) is continuous.
lemma (in topology0) product_quo_fun:
assumes \( \text{equiv}(\bigcup T,r) \)
shows \( \text{IsContinuous}(T\times _tT,(\text{ quotient by } r)\times _t(\text{ quotient by } r),\{\langle \langle b,c\rangle ,\langle r\{b\},r\{c\}\rangle \rangle .\ \langle b,c\rangle \in \bigcup T\times \bigcup T\}) \)proofThe product of quotient topologies is a quotient topology given that the quotient map is open. This isn't true in general.
theorem (in topology0) prod_quotient:
assumes \( \text{equiv}(\bigcup T,r) \), \( \forall A\in T.\ \{\langle b,r\{b\}\rangle .\ b\in \bigcup T\}(A) \in (\text{ quotient by } r) \)
shows \( ((\text{ quotient by } r)\times _t\text{ quotient by } r) = \) \( (\text{ quotient topology in } (((\bigcup T)//r)\times ((\bigcup T)//r))\text{ by } (\{\langle \langle b,c\rangle ,\langle r\{b\},r\{c\}\rangle \rangle .\ \langle b,c\rangle \in \bigcup T\times \bigcup T\})\text{ from } (T\times _tT)) \)proofassumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A\cap B) = f^{-1}(A) \cap f^{-1}(B) \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(D) \subseteq X \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(Y) = X \)assumes \( x\in X \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\}(x)=b(x) \)assumes \( \text{equiv}(A,r) \) and \( C \in A//r \) and \( x\in C \)
shows \( x\in A \)assumes \( \text{equiv}(A,r) \), \( C \in A//r \) and \( x\in C \)
shows \( r\{x\} = C \)assumes \( U\subseteq A//r \), \( \text{equiv}(A,r) \)
shows \( \{\langle b,r\{b\}\rangle .\ b\in A\}^{-1}(U) = \bigcup U \)assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( (\bigcup (\text{ quotient topology in } Y\text{ by } f))=Y \)assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( (\text{ quotient topology in } Y\text{ by } f) \text{ is a topology } \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( f:X\rightarrow Y \), \( x\in X \), \( y = f(x) \)
shows \( \langle x,y\rangle \in f \), \( y \in \text{range}(f) \)assumes \( \text{equiv}(\bigcup T,r) \)
shows \( \bigcup (\text{ quotient by }r)=(\bigcup T)//r \)assumes \( \text{equiv}(\bigcup T,r) \)
shows \( (\text{ quotient by }r)=\{U\in Pow((\bigcup T)//r).\ \bigcup U\in T\} \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( A \subseteq f^{-1}(f(A)) \)assumes \( f: X\rightarrow Y \), \( g: X\rightarrow Z \) and \( \forall x\in X.\ f(x) = g(x) \)
shows \( f = g \)assumes \( f\in \text{surj}(\bigcup T,Y) \)
shows \( \text{IsContinuous}(T,(\text{ quotient topology in } Y\text{ by } f),f) \)assumes \( h\in \text{surj}(\bigcup \tau _1,Y) \), \( g:Y\rightarrow \bigcup \tau _2 \), \( \text{IsContinuous}(\tau _1,\tau _2,g\circ h) \)
shows \( \text{IsContinuous}((\text{ quotient topology in } Y\text{ by } h\text{ from } \tau _1),\tau _2,g) \)assumes \( \text{equiv}(\bigcup T,r) \)
shows \( (\text{ quotient by }r)\text{ is a topology } \)assumes \( f \in \text{surj}(X,Y) \) and \( A\subseteq Y \)
shows \( f(f^{-1}(A)) = A \)assumes \( f \in \text{bij}(\bigcup T,\bigcup S) \) and \( \text{IsContinuous}(T,S,f) \) and \( \forall U\in T.\ f(U) \in S \)
shows \( \text{IsAhomeomorphism}(T,S,f) \)assumes \( f:X_1\rightarrow X_2 \), \( g:X_3\rightarrow X_4 \)
shows \( \{\langle \langle x,y\rangle ,\langle f(x),g(y)\rangle \rangle .\ \langle x,y\rangle \in X_1\times X_3\}:X_1\times X_3\rightarrow X_2\times X_4 \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \)
shows \( (T\times _tS) \text{ is a topology } \), \( \text{ProductCollection}(T,S) \text{ is a base for } (T\times _tS) \), \( \bigcup (T\times _tS) = \bigcup T \times \bigcup S \)assumes \( f:X_1\rightarrow X_2 \), \( g:\bigcup \tau _3\rightarrow \bigcup \tau _4 \), \( \text{IsContinuous}(\tau _1,\tau _2,f) \), \( \text{IsContinuous}(\tau _3,\tau _4,g) \), \( \tau _4\text{ is a topology } \), \( \tau _3\text{ is a topology } \)
shows \( \text{IsContinuous}( \text{ProductTopology}(\tau _1,\tau _3), \text{ProductTopology}(\tau _2,\tau _4),\{\langle \langle x,y\rangle ,\langle fx,gy\rangle \rangle .\ \langle x,y\rangle \in X_1\times \bigcup \tau _3\}) \)assumes \( \text{equiv}(\bigcup T,r) \)
shows \( \text{IsContinuous}(T\times _tT,(\text{ quotient by } r)\times _t(\text{ quotient by } r),\{\langle \langle b,c\rangle ,\langle r\{b\},r\{c\}\rangle \rangle .\ \langle b,c\rangle \in \bigcup T\times \bigcup T\}) \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \)
shows \( (T\times _tS) \text{ is a topology } \), \( \text{ProductCollection}(T,S) \text{ is a base for } (T\times _tS) \), \( \bigcup (T\times _tS) = \bigcup T \times \bigcup S \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \) and \( U \in \text{ProductTopology}(T,S) \) and \( x \in U \)
shows \( \exists V W.\ V\in T \wedge W\in S \wedge V\times W \subseteq U \wedge x \in V\times W \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \) and \( U\in T \), \( V\in S \)
shows \( U\times V \in \text{ProductTopology}(T,S) \)assumes \( x\in X \), \( \phi (x) \), \( \psi (x) \)
shows \( \exists x\in X.\ \phi (x) \wedge \psi (x) \)assumes \( \forall x\in V.\ \exists U\in T.\ (x\in U \wedge U\subseteq V) \)
shows \( V\in T \)assumes \( T \text{ is a topology } \), \( S \text{ is a topology } \)
shows \( (T\times _tS) \text{ is a topology } \), \( \text{ProductCollection}(T,S) \text{ is a base for } (T\times _tS) \), \( \bigcup (T\times _tS) = \bigcup T \times \bigcup S \)