This theory is a continuation of Order_ZF and talks about maximuma and minimum of a set, supremum and infimum and strict (not reflexive) versions of order relations.
In this section we show that maximum and minimum are unique if they exist. We also show that union of sets that have maxima (minima) has a maximum (minimum). We also show that singletons have maximum and minimum. All this allows to show (in Finite_ZF) that every finite set has well-defined maximum and minimum.
A somewhat technical fact that allows to reduce the number of premises in some theorems: the assumption that a set has a maximum implies that it is not empty.
lemma set_max_not_empty:
assumes \( \text{HasAmaximum}(r,A) \)
shows \( A\neq 0 \) using assms unfolding HasAmaximum_defIf a set has a maximum implies that it is not empty.
lemma set_min_not_empty:
assumes \( \text{HasAminimum}(r,A) \)
shows \( A\neq 0 \) using assms unfolding HasAminimum_defIf a set has a supremum then it cannot be empty. We are probably using the fact that \(\bigcap \emptyset = \emptyset \), which makes me a bit anxious as this I think is just a convention.
lemma set_sup_not_empty:
assumes \( \text{HasAsupremum}(r,A) \)
shows \( A\neq 0 \)proofIf a set has an infimum then it cannot be empty.
lemma set_inf_not_empty:
assumes \( \text{HasAnInfimum}(r,A) \)
shows \( A\neq 0 \)proofFor antisymmetric relations maximum of a set is unique if it exists.
lemma Order_ZF_4_L1:
assumes A1: \( \text{antisym}(r) \) and A2: \( \text{HasAmaximum}(r,A) \)
shows \( \exists !M.\ M\in A \wedge (\forall x\in A.\ \langle x,M\rangle \in r) \)proofFor antisymmetric relations minimum of a set is unique if it exists.
lemma Order_ZF_4_L2:
assumes A1: \( \text{antisym}(r) \) and A2: \( \text{HasAminimum}(r,A) \)
shows \( \exists !m.\ m\in A \wedge (\forall x\in A.\ \langle m,x\rangle \in r) \)proofMaximum of a set has desired properties.
lemma Order_ZF_4_L3:
assumes A1: \( \text{antisym}(r) \) and A2: \( \text{HasAmaximum}(r,A) \)
shows \( \text{Maximum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \)proofMinimum of a set has desired properties.
lemma Order_ZF_4_L4:
assumes A1: \( \text{antisym}(r) \) and A2: \( \text{HasAminimum}(r,A) \)
shows \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)proofFor total and transitive relations a union a of two sets that have maxima has a maximum.
lemma Order_ZF_4_L5:
assumes A1: \( r \text{ is total on } (A\cup B) \) and A2: \( \text{trans}(r) \) and A3: \( \text{HasAmaximum}(r,A) \), \( \text{HasAmaximum}(r,B) \)
shows \( \text{HasAmaximum}(r,A\cup B) \)proofFor total and transitive relations A union a of two sets that have minima has a minimum.
lemma Order_ZF_4_L6:
assumes A1: \( r \text{ is total on } (A\cup B) \) and A2: \( \text{trans}(r) \) and A3: \( \text{HasAminimum}(r,A) \), \( \text{HasAminimum}(r,B) \)
shows \( \text{HasAminimum}(r,A\cup B) \)proofSet that has a maximum is bounded above.
lemma Order_ZF_4_L7:
assumes \( \text{HasAmaximum}(r,A) \)
shows \( \text{IsBoundedAbove}(A,r) \) using assms, HasAmaximum_def, IsBoundedAbove_defSet that has a minimum is bounded below.
lemma Order_ZF_4_L8A:
assumes \( \text{HasAminimum}(r,A) \)
shows \( \text{IsBoundedBelow}(A,r) \) using assms, HasAminimum_def, IsBoundedBelow_defFor reflexive relations singletons have a minimum and maximum.
lemma Order_ZF_4_L8:
assumes \( \text{refl}(X,r) \) and \( a\in X \)
shows \( \text{HasAmaximum}(r,\{a\}) \), \( \text{HasAminimum}(r,\{a\}) \) using assms, refl_def, HasAmaximum_def, HasAminimum_defFor total and transitive relations if we add an element to a set that has a maximum, the set still has a maximum.
lemma Order_ZF_4_L9:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( A\subseteq X \) and A4: \( a\in X \) and A5: \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAmaximum}(r,A\cup \{a\}) \)proofFor total and transitive relations if we add an element to a set that has a minimum, the set still has a minimum.
lemma Order_ZF_4_L10:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( A\subseteq X \) and A4: \( a\in X \) and A5: \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAminimum}(r,A\cup \{a\}) \)proofIf the order relation has a property that every nonempty bounded set attains a minimum (for example integers are like that), then every nonempty set bounded below attains a minimum.
lemma Order_ZF_4_L11:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( r \subseteq X\times X \) and A4: \( \forall A.\ \text{IsBounded}(A,r) \wedge A\neq 0 \longrightarrow \text{HasAminimum}(r,A) \) and A5: \( B\neq 0 \) and A6: \( \text{IsBoundedBelow}(B,r) \)
shows \( \text{HasAminimum}(r,B) \)proofA dual to Order_ZF_4_L11: If the order relation has a property that every nonempty bounded set attains a maximum (for example integers are like that), then every nonempty set bounded above attains a maximum.
lemma Order_ZF_4_L11A:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( r \subseteq X\times X \) and A4: \( \forall A.\ \text{IsBounded}(A,r) \wedge A\neq 0 \longrightarrow \text{HasAmaximum}(r,A) \) and A5: \( B\neq 0 \) and A6: \( \text{IsBoundedAbove}(B,r) \)
shows \( \text{HasAmaximum}(r,B) \)proofIf a set has a minimum and \(L\) is less or equal than all elements of the set, then \(L\) is less or equal than the minimum.
lemma Order_ZF_4_L12:
assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \) and \( \forall a\in A.\ \langle L,a\rangle \in r \)
shows \( \langle L, \text{Minimum}(r,A)\rangle \in r \) using assms, Order_ZF_4_L4If a set has a maximum and all its elements are less or equal than \(M\), then the maximum of the set is less or equal than \(M\).
lemma Order_ZF_4_L13:
assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \) and \( \forall a\in A.\ \langle a,M\rangle \in r \)
shows \( \langle \text{Maximum}(r,A),M\rangle \in r \) using assms, Order_ZF_4_L3If an element belongs to a set and is greater or equal than all elements of that set, then it is the maximum of that set.
lemma Order_ZF_4_L14:
assumes A1: \( \text{antisym}(r) \) and A2: \( M \in A \) and A3: \( \forall a\in A.\ \langle a,M\rangle \in r \)
shows \( \text{Maximum}(r,A) = M \)proofIf an element belongs to a set and is less or equal than all elements of that set, then it is the minimum of that set.
lemma Order_ZF_4_L15:
assumes A1: \( \text{antisym}(r) \) and A2: \( m \in A \) and A3: \( \forall a\in A.\ \langle m,a\rangle \in r \)
shows \( \text{Minimum}(r,A) = m \)proofIf a set does not have a maximum, then for any its element we can find one that is (strictly) greater.
lemma Order_ZF_4_L16:
assumes A1: \( \text{antisym}(r) \) and A2: \( r \text{ is total on } X \) and A3: \( A\subseteq X \) and A4: \( \neg \text{HasAmaximum}(r,A) \) and A5: \( x\in A \)
shows \( \exists y\in A.\ \langle x,y\rangle \in r \wedge y\neq x \)proofIn this section we consider the notions of supremum and infimum a set.
Elements of the set of upper bounds are indeed upper bounds. Isabelle also thinks it is obvious.
lemma Order_ZF_5_L1:
assumes \( u \in (\bigcap a\in A.\ r\{a\}) \) and \( a\in A \)
shows \( \langle a,u\rangle \in r \) using assmsElements of the set of lower bounds are indeed lower bounds. Isabelle also thinks it is obvious.
lemma Order_ZF_5_L2:
assumes \( l \in (\bigcap a\in A.\ r^{-1}\{a\}) \) and \( a\in A \)
shows \( \langle l,a\rangle \in r \) using assmsIf the set of upper bounds has a minimum, then the supremum is less or equal than any upper bound. We can probably do away with the assumption that \(A\) is not empty, (ab)using the fact that intersection over an empty family is defined in Isabelle to be empty. This lemma is obsolete and will be removed in the future. Use sup_leq_up_bnd instead.
lemma Order_ZF_5_L3:
assumes A1: \( \text{antisym}(r) \) and A2: \( A\neq 0 \) and A3: \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \) and A4: \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \langle \text{Supremum}(r,A),u\rangle \in r \)proofSupremum is less or equal than any upper bound.
lemma sup_leq_up_bnd:
assumes \( \text{antisym}(r) \), \( \text{HasAsupremum}(r,A) \), \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \langle \text{Supremum}(r,A),u\rangle \in r \)proofInfimum is greater or equal than any lower bound. This lemma is obsolete and will be removed. Use inf_geq_lo_bnd instead.
lemma Order_ZF_5_L4:
assumes A1: \( \text{antisym}(r) \) and A2: \( A\neq 0 \) and A3: \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \) and A4: \( \forall a\in A.\ \langle l,a\rangle \in r \)
shows \( \langle l, \text{Infimum}(r,A)\rangle \in r \)proofInfimum is greater or equal than any upper bound.
lemma inf_geq_lo_bnd:
assumes \( \text{antisym}(r) \), \( \text{HasAnInfimum}(r,A) \), \( \forall a\in A.\ \langle u,a\rangle \in r \)
shows \( \langle u, \text{Infimum}(r,A)\rangle \in r \)proofIf \(z\) is an upper bound for \(A\) and is less or equal than any other upper bound, then \(z\) is the supremum of \(A\).
lemma Order_ZF_5_L5:
assumes A1: \( \text{antisym}(r) \) and A2: \( A\neq 0 \) and A3: \( \forall x\in A.\ \langle x,z\rangle \in r \) and A4: \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)proofThe dual theorem to Order_ZF_5_L5: if \(z\) is an lower bound for \(A\) and is greater or equal than any other lower bound, then \(z\) is the infimum of \(A\).
lemma inf_glb:
assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \forall x\in A.\ \langle z,x\rangle \in r \), \( \forall y.\ (\forall x\in A.\ \langle y,x\rangle \in r) \longrightarrow \langle y,z\rangle \in r \)
shows \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \), \( z = \text{Infimum}(r,A) \)proofSupremum and infimum of a singleton is the element.
lemma sup_inf_singl:
assumes \( \text{antisym}(r) \), \( \text{refl}(X,r) \), \( z\in X \)
shows \( \text{HasAsupremum}(r,\{z\}) \), \( \text{Supremum}(r,\{z\}) = z \) and \( \text{HasAnInfimum}(r,\{z\}) \), \( \text{Infimum}(r,\{z\}) = z \)proofIf a set has a maximum, then the maximum is the supremum. This lemma is obsolete, use max_is_sup instead.
lemma Order_ZF_5_L6:
assumes A1: \( \text{antisym}(r) \) and A2: \( A\neq 0 \) and A3: \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( \text{Maximum}(r,A) = \text{Supremum}(r,A) \)proofAnother version of Order_ZF_5_L6 that: if a sat has a maximum then it has a supremum and the maximum is the supremum.
lemma max_is_sup:
assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAsupremum}(r,A) \) and \( \text{Maximum}(r,A) = \text{Supremum}(r,A) \)proofMinimum is the infimum if it exists.
lemma min_is_inf:
assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAnInfimum}(r,A) \) and \( \text{Minimum}(r,A) = \text{Infimum}(r,A) \)proofFor reflexive and total relations two-element set has a minimum and a maximum.
lemma min_max_two_el:
assumes \( r \text{ is total on } X \), \( x\in X \), \( y\in X \)
shows \( \text{HasAminimum}(r,\{x,y\}) \) and \( \text{HasAmaximum}(r,\{x,y\}) \) using assms unfolding IsTotal_def, HasAminimum_def, HasAmaximum_defFor antisymmetric, reflexive and total relations two-element set has a supremum and infimum.
lemma inf_sup_two_el:
assumes \( \text{antisym}(r) \), \( r \text{ is total on } X \), \( x\in X \), \( y\in X \)
shows \( \text{HasAnInfimum}(r,\{x,y\}) \), \( \text{Minimum}(r,\{x,y\}) = \text{Infimum}(r,\{x,y\}) \), \( \text{HasAsupremum}(r,\{x,y\}) \), \( \text{Maximum}(r,\{x,y\}) = \text{Supremum}(r,\{x,y\}) \) using assms, min_max_two_el, max_is_sup, min_is_infA sufficient condition for the supremum to be in the space.
lemma sup_in_space:
assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \)
shows \( \text{Supremum}(r,A) \in X \) and \( \forall x\in A.\ \langle x, \text{Supremum}(r,A)\rangle \in r \)proofA sufficient condition for the infimum to be in the space.
lemma inf_in_space:
assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \)
shows \( \text{Infimum}(r,A) \in X \) and \( \forall x\in A.\ \langle \text{Infimum}(r,A),x\rangle \in r \)proofProperties of supremum of a set for complete relations.
lemma Order_ZF_5_L7:
assumes A1: \( r \subseteq X\times X \) and A2: \( \text{antisym}(r) \) and A3: \( r \text{ is complete } \) and A4: \( A\neq 0 \) and A5: \( \exists x\in X.\ \forall y\in A.\ \langle y,x\rangle \in r \)
shows \( \text{Supremum}(r,A) \in X \) and \( \forall x\in A.\ \langle x, \text{Supremum}(r,A)\rangle \in r \)proofInfimum of the set of infima of a collection of sets is infimum of the union.
lemma inf_inf:
assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{trans}(r) \), \( \forall T\in \mathcal{T} .\ \text{HasAnInfimum}(r,T) \), \( \text{HasAnInfimum}(r,\{ \text{Infimum}(r,T).\ T\in \mathcal{T} \}) \)
shows \( \text{HasAnInfimum}(r,\bigcup \mathcal{T} ) \) and \( \text{Infimum}(r,\{ \text{Infimum}(r,T).\ T\in \mathcal{T} \}) = \text{Infimum}(r,\bigcup \mathcal{T} ) \)proofSupremum of the set of suprema of a collection of sets is supremum of the union.
lemma sup_sup:
assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{trans}(r) \), \( \forall T\in \mathcal{T} .\ \text{HasAsupremum}(r,T) \), \( \text{HasAsupremum}(r,\{ \text{Supremum}(r,T).\ T\in \mathcal{T} \}) \)
shows \( \text{HasAsupremum}(r,\bigcup \mathcal{T} ) \) and \( \text{Supremum}(r,\{ \text{Supremum}(r,T).\ T\in \mathcal{T} \}) = \text{Supremum}(r,\bigcup \mathcal{T} ) \)proofIf the relation is a linear order then for any element \(y\) smaller than the supremum of a set we can find one element of the set that is greater than \(y\).
lemma Order_ZF_5_L8:
assumes A1: \( r \subseteq X\times X \) and A2: \( \text{IsLinOrder}(X,r) \) and A3: \( r \text{ is complete } \) and A4: \( A\subseteq X \), \( A\neq 0 \) and A5: \( \exists x\in X.\ \forall y\in A.\ \langle y,x\rangle \in r \) and A6: \( \langle y, \text{Supremum}(r,A)\rangle \in r \), \( y \neq \text{Supremum}(r,A) \)
shows \( \exists z\in A.\ \langle y,z\rangle \in r \wedge y \neq z \)proofOne of the problems with translating formalized mathematics from Metamath to IsarMathLib is that Metamath uses strict orders (of the \(<\) type) while in IsarMathLib we mostly use nonstrict orders (of the \(\leq\) type). This doesn't really make any difference, but is annoying as we have to prove many theorems twice. In this section we prove some theorems to make it easier to translate the statements about strict orders to statements about the corresponding non-strict order and vice versa.
We define a strict version of a relation by removing the \(y=x\) line from the relation.
definition
\( \text{StrictVersion}(r) \equiv r - \{\langle x,x\rangle .\ x \in domain(r)\} \)
A reformulation of the definition of a strict version of an order.
lemma def_of_strict_ver:
shows \( \langle x,y\rangle \in \text{StrictVersion}(r) \longleftrightarrow \langle x,y\rangle \in r \wedge x\neq y \) using StrictVersion_def, domain_defThe next lemma is about the strict version of an antisymmetric relation.
lemma strict_of_antisym:
assumes A1: \( \text{antisym}(r) \) and A2: \( \langle a,b\rangle \in \text{StrictVersion}(r) \)
shows \( \langle b,a\rangle \notin \text{StrictVersion}(r) \)proofThe strict version of totality.
lemma strict_of_tot:
assumes \( r \text{ is total on } X \) and \( a\in X \), \( b\in X \), \( a\neq b \)
shows \( \langle a,b\rangle \in \text{StrictVersion}(r) \vee \langle b,a\rangle \in \text{StrictVersion}(r) \) using assms, IsTotal_def, def_of_strict_verA trichotomy law for the strict version of a total and antisymmetric relation. It is kind of interesting that one does not need the full linear order for this.
lemma strict_ans_tot_trich:
assumes A1: \( \text{antisym}(r) \) and A2: \( r \text{ is total on } X \) and A3: \( a\in X \), \( b\in X \) and A4: \( s = \text{StrictVersion}(r) \)
shows \( \text{Exactly_1_of_3_holds} (\langle a,b\rangle \in s, a=b,\langle b,a\rangle \in s) \)proofA trichotomy law for linear order. This is a special case of strict_ans_tot_trich.
corollary strict_lin_trich:
assumes A1: \( \text{IsLinOrder}(X,r) \) and A2: \( a\in X \), \( b\in X \) and A3: \( s = \text{StrictVersion}(r) \)
shows \( \text{Exactly_1_of_3_holds} (\langle a,b\rangle \in s, a=b,\langle b,a\rangle \in s) \) using assms, IsLinOrder_def, strict_ans_tot_trichFor an antisymmetric relation if a pair is in relation then the reversed pair is not in the strict version of the relation.
lemma geq_impl_not_less:
assumes A1: \( \text{antisym}(r) \) and A2: \( \langle a,b\rangle \in r \)
shows \( \langle b,a\rangle \notin \text{StrictVersion}(r) \)proofIf an antisymmetric relation is transitive, then the strict version is also transitive, an explicit version strict_of_transB below.
lemma strict_of_transA:
assumes A1: \( \text{trans}(r) \) and A2: \( \text{antisym}(r) \) and A3: \( s= \text{StrictVersion}(r) \) and A4: \( \langle a,b\rangle \in s \), \( \langle b,c\rangle \in s \)
shows \( \langle a,c\rangle \in s \)proofIf an antisymmetric relation is transitive, then the strict version is also transitive.
lemma strict_of_transB:
assumes A1: \( \text{trans}(r) \) and A2: \( \text{antisym}(r) \)
shows \( \text{trans}( \text{StrictVersion}(r)) \)proofThe next lemma provides a condition that is satisfied by the strict version of a relation if the original relation is a complete linear order.
lemma strict_of_compl:
assumes A1: \( r \subseteq X\times X \) and A2: \( \text{IsLinOrder}(X,r) \) and A3: \( r \text{ is complete } \) and A4: \( A\subseteq X \), \( A\neq 0 \) and A5: \( s = \text{StrictVersion}(r) \) and A6: \( \exists u\in X.\ \forall y\in A.\ \langle y,u\rangle \in s \)
shows \( \exists x\in X.\ ( \forall y\in A.\ \langle x,y\rangle \notin s ) \wedge (\forall y\in X.\ \langle y,x\rangle \in s \longrightarrow (\exists z\in A.\ \langle y,z\rangle \in s)) \)proofStrict version of a relation on a set is a relation on that set.
lemma strict_ver_rel:
assumes A1: \( r \subseteq A\times A \)
shows \( \text{StrictVersion}(r) \subseteq A\times A \) using assms, StrictVersion_defassumes \( \text{HasAminimum}(r,A) \)
shows \( A\neq 0 \)assumes \( \text{HasAmaximum}(r,A) \)
shows \( A\neq 0 \)assumes \( \text{antisym}(r) \) and \( \langle a,b\rangle \in r \), \( \langle b,a\rangle \in r \)
shows \( a=b \)assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \)
shows \( \exists !M.\ M\in A \wedge (\forall x\in A.\ \langle x,M\rangle \in r) \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \)
shows \( \exists !m.\ m\in A \wedge (\forall x\in A.\ \langle m,x\rangle \in r) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( u\in X \), \( w\in X \) and \( \forall x\in A.\ \langle x,u\rangle \in r \), \( \forall x\in B.\ \langle x,w\rangle \in r \)
shows \( \forall x\in A\cup B.\ \langle x, \text{GreaterOf}(r,u,w)\rangle \in r \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( l\in X \), \( m\in X \) and \( \forall x\in A.\ \langle l,x\rangle \in r \), \( \forall x\in B.\ \langle m,x\rangle \in r \)
shows \( \forall x\in A\cup B.\ \langle \text{SmallerOf}(r,l,m),x\rangle \in r \)assumes \( r \text{ is total on } X \) and \( A\subseteq X \)
shows \( r \text{ is total on } A \)assumes \( r \text{ is total on } X \)
shows \( \text{refl}(X,r) \)assumes \( \text{refl}(X,r) \) and \( a\in X \)
shows \( \text{HasAmaximum}(r,\{a\}) \), \( \text{HasAminimum}(r,\{a\}) \)assumes \( r \text{ is total on } (A\cup B) \) and \( \text{trans}(r) \) and \( \text{HasAmaximum}(r,A) \), \( \text{HasAmaximum}(r,B) \)
shows \( \text{HasAmaximum}(r,A\cup B) \)assumes \( r \text{ is total on } (A\cup B) \) and \( \text{trans}(r) \) and \( \text{HasAminimum}(r,A) \), \( \text{HasAminimum}(r,B) \)
shows \( \text{HasAminimum}(r,A\cup B) \)assumes \( r \subseteq X\times X \) and \( \text{IsBoundedBelow}(A,r) \)
shows \( A\subseteq X \)assumes \( \text{IsBoundedBelow}(A,r) \) and \( B\subseteq A \)
shows \( \text{IsBoundedBelow}(B,r) \)assumes \( r \text{ is total on } X \) and \( A\subseteq X \) and \( a\in X \)
shows \( A = \{x\in A.\ \langle x,a\rangle \in r\} \cup \{x\in A.\ \langle a,x\rangle \in r\} \)assumes \( \text{trans}(r) \) and \( \langle a,b\rangle \in r \wedge \langle b,c\rangle \in r \)
shows \( \langle a,c\rangle \in r \)assumes \( r \subseteq X\times X \) and \( \text{IsBoundedAbove}(A,r) \)
shows \( A\subseteq X \)assumes \( \text{IsBoundedAbove}(A,r) \) and \( B\subseteq A \)
shows \( \text{IsBoundedAbove}(B,r) \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \)
shows \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{Maximum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \)assumes \( r \text{ is total on } X \) and \( a\in X \)
shows \( \langle a,a\rangle \in r \)assumes \( \text{HasAsupremum}(r,A) \)
shows \( A\neq 0 \)assumes \( \text{HasAnInfimum}(r,A) \)
shows \( A\neq 0 \)assumes \( \text{antisym}(r) \) and \( m \in A \) and \( \forall a\in A.\ \langle m,a\rangle \in r \)
shows \( \text{Minimum}(r,A) = m \)assumes \( \text{antisym}(r) \) and \( M \in A \) and \( \forall a\in A.\ \langle a,M\rangle \in r \)
shows \( \text{Maximum}(r,A) = M \)assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \forall x\in A.\ \langle z,x\rangle \in r \), \( \forall y.\ (\forall x\in A.\ \langle y,x\rangle \in r) \longrightarrow \langle y,z\rangle \in r \)
shows \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \), \( z = \text{Infimum}(r,A) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \forall x\in A.\ \langle x,z\rangle \in r \) and \( \forall y.\ (\forall x\in A.\ \langle x,y\rangle \in r) \longrightarrow \langle z,y\rangle \in r \)
shows \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \), \( z = \text{Supremum}(r,A) \)assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \forall x\in A.\ \langle z,x\rangle \in r \), \( \forall y.\ (\forall x\in A.\ \langle y,x\rangle \in r) \longrightarrow \langle y,z\rangle \in r \)
shows \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \), \( z = \text{Infimum}(r,A) \)assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \forall x\in A.\ \langle z,x\rangle \in r \), \( \forall y.\ (\forall x\in A.\ \langle y,x\rangle \in r) \longrightarrow \langle y,z\rangle \in r \)
shows \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \), \( z = \text{Infimum}(r,A) \)assumes \( r \text{ is total on } X \), \( x\in X \), \( y\in X \)
shows \( \text{HasAminimum}(r,\{x,y\}) \) and \( \text{HasAmaximum}(r,\{x,y\}) \)assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAsupremum}(r,A) \) and \( \text{Maximum}(r,A) = \text{Supremum}(r,A) \)assumes \( \text{antisym}(r) \), \( A\neq 0 \), \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAnInfimum}(r,A) \) and \( \text{Minimum}(r,A) = \text{Infimum}(r,A) \)assumes \( u \in (\bigcap a\in A.\ r\{a\}) \) and \( a\in A \)
shows \( \langle a,u\rangle \in r \)assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \)
shows \( \text{Supremum}(r,A) \in X \) and \( \forall x\in A.\ \langle x, \text{Supremum}(r,A)\rangle \in r \)assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{HasAmaximum}(r,\bigcap a\in A.\ r^{-1}\{a\}) \)
shows \( \text{Infimum}(r,A) \in X \) and \( \forall x\in A.\ \langle \text{Infimum}(r,A),x\rangle \in r \)assumes \( \text{antisym}(r) \), \( \text{HasAnInfimum}(r,A) \), \( \forall a\in A.\ \langle u,a\rangle \in r \)
shows \( \langle u, \text{Infimum}(r,A)\rangle \in r \)assumes \( r \subseteq X\times X \), \( \text{antisym}(r) \), \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \)
shows \( \text{Supremum}(r,A) \in X \) and \( \forall x\in A.\ \langle x, \text{Supremum}(r,A)\rangle \in r \)assumes \( \text{antisym}(r) \), \( \text{HasAsupremum}(r,A) \), \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \langle \text{Supremum}(r,A),u\rangle \in r \)assumes \( \text{antisym}(r) \) and \( A\neq 0 \) and \( \text{HasAminimum}(r,\bigcap a\in A.\ r\{a\}) \) and \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \langle \text{Supremum}(r,A),u\rangle \in r \)assumes \( r \text{ is total on } X \) and \( a\in X \), \( b\in X \), \( a\neq b \)
shows \( \langle a,b\rangle \in \text{StrictVersion}(r) \vee \langle b,a\rangle \in \text{StrictVersion}(r) \)assumes \( \text{antisym}(r) \) and \( \langle a,b\rangle \in \text{StrictVersion}(r) \)
shows \( \langle b,a\rangle \notin \text{StrictVersion}(r) \)assumes \( p\vee q\vee r \) and \( p \longrightarrow \neg q \wedge \neg r \) and \( q \longrightarrow \neg p \wedge \neg r \) and \( r \longrightarrow \neg p \wedge \neg q \)
shows \( \text{Exactly_1_of_3_holds} (p,q,r) \)assumes \( \text{antisym}(r) \) and \( r \text{ is total on } X \) and \( a\in X \), \( b\in X \) and \( s = \text{StrictVersion}(r) \)
shows \( \text{Exactly_1_of_3_holds} (\langle a,b\rangle \in s, a=b,\langle b,a\rangle \in s) \)assumes \( \text{trans}(r) \) and \( \text{antisym}(r) \) and \( s= \text{StrictVersion}(r) \) and \( \langle a,b\rangle \in s \), \( \langle b,c\rangle \in s \)
shows \( \langle a,c\rangle \in s \)assumes \( \forall x y z.\ \langle x, y\rangle \in r \wedge \langle y, z\rangle \in r \longrightarrow \langle x, z\rangle \in r \)
shows \( \text{trans}(r) \)assumes \( r \subseteq X\times X \) and \( \text{antisym}(r) \) and \( r \text{ is complete } \) and \( A\neq 0 \) and \( \exists x\in X.\ \forall y\in A.\ \langle y,x\rangle \in r \)
shows \( \text{Supremum}(r,A) \in X \) and \( \forall x\in A.\ \langle x, \text{Supremum}(r,A)\rangle \in r \)assumes \( \text{antisym}(r) \) and \( \langle a,b\rangle \in r \)
shows \( \langle b,a\rangle \notin \text{StrictVersion}(r) \)assumes \( r \subseteq X\times X \) and \( \text{IsLinOrder}(X,r) \) and \( r \text{ is complete } \) and \( A\subseteq X \), \( A\neq 0 \) and \( \exists x\in X.\ \forall y\in A.\ \langle y,x\rangle \in r \) and \( \langle y, \text{Supremum}(r,A)\rangle \in r \), \( y \neq \text{Supremum}(r,A) \)
shows \( \exists z\in A.\ \langle y,z\rangle \in r \wedge y \neq z \)