A quasigroup is an algebraic structure that that one gets after adding (sort of) divsibility to magma. Quasigroups differ from groups in that they are not necessarily associative and they do not have to have the neutral element.
According to Wikipedia there are at least two approaches to defining a quasigroup. One defines a quasigroup as a set with a binary operation, and the other, from universal algebra, defines a quasigroup as having three primitive operations. We will use the first approach.
A quasigroup operation does not have to have the neutral element. The left division is defined as the only solution to the equation \(a\cdot x=b\) (using multiplicative notation). The next definition specifies what does it mean that an operation \(A\) has a left division on a set \(G\).
definition
\( Has\text{ LeftDiv}(G,A) \equiv \forall a\in G.\ \forall b\in G.\ \exists !x.\ (x\in G \wedge A\langle a,x\rangle = b) \)
An operation \(A\) has the right division if for all elements \(a,b \in G\) the equation \(x\cdot a=b\) has a unique solution.
definition
\( Has\text{ RightDiv}(G,A) \equiv \forall a\in G.\ \forall b\in G.\ \exists !x.\ (x\in G \wedge A\langle x,a\rangle = b) \)
An operation that has both left and right division is said to have the Latin square property.
definition
\( A \text{ has Latin square property on } G \equiv Has\text{ LeftDiv}(G,A) \wedge Has\text{ RightDiv}(G,A) \)
A quasigroup is a set with a binary operation that has the Latin square property.
definition
\( \text{IsAquasigroup}(G,A) \equiv A:G\times G\rightarrow G \wedge A \text{ has Latin square property on } G \)
The uniqueness of the left inverse allows us to define the left division as a function. The union expression as the value of the function extracts the only element of the set of solutions of the equation \(x\cdot z = y\) for given \(\langle x,y \rangle = p \in G\times G\) using the identity \(\bigcup \{x\} =x\).
definition
\( \text{ LeftDiv}(G,A) \equiv \{\langle p,\bigcup \{z\in G.\ A\langle \text{fst}(p),z\rangle = \text{snd}(p)\}\rangle .\ p\in G\times G\} \)
Similarly the right division is defined as a function on \(G\times G\).
definition
\( \text{ RightDiv}(G,A) \equiv \{\langle p,\bigcup \{z\in G.\ A\langle z,\text{fst}(p)\rangle = \text{snd}(p)\}\rangle .\ p\in G\times G\} \)
Left and right divisions are binary operations on \(G\).
lemma lrdiv_binop:
assumes \( \text{IsAquasigroup}(G,A) \)
shows \( \text{ LeftDiv}(G,A):G\times G\rightarrow G \) and \( \text{ RightDiv}(G,A):G\times G\rightarrow G \)proofWe will use multiplicative notation for the quasigroup operation. The right and left division will be denoted \(a/b\) and \(a\backslash b\), resp.
locale quasigroup0
assumes qgroupassum: \( \text{IsAquasigroup}(G,A) \)
defines \( x\cdot y \equiv A\langle x,y\rangle \)
defines \( x\backslash y \equiv \text{ LeftDiv}(G,A)\langle x,y\rangle \)
defines \( x/ y \equiv \text{ RightDiv}(G,A)\langle y,x\rangle \)
The quasigroup operation is closed on \(G\).
lemma (in quasigroup0) qg_op_closed:
assumes \( x\in G \), \( y\in G \)
shows \( x\cdot y \in G \) using qgroupassum, assms, IsAquasigroup_def, apply_funtypeA couple of properties of right and left division:
lemma (in quasigroup0) lrdiv_props:
assumes \( x\in G \), \( y\in G \)
shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)proofWe can cancel the left element on both sides of an equation.
lemma (in quasigroup0) qg_cancel_left:
assumes \( x\in G \), \( y\in G \), \( z\in G \) and \( x\cdot y = x\cdot z \)
shows \( y=z \) using qgroupassum, assms, qg_op_closed, lrdiv_props(4)We can cancel the right element on both sides of an equation.
lemma (in quasigroup0) qg_cancel_right:
assumes \( x\in G \), \( y\in G \), \( z\in G \) and \( y\cdot x = z\cdot x \)
shows \( y=z \) using qgroupassum, assms, qg_op_closed, lrdiv_props(1)Two additional identities for right and left division:
lemma (in quasigroup0) lrdiv_ident:
assumes \( x\in G \), \( y\in G \)
shows \( (y\cdot x)/ x = y \) and \( x\backslash (x\cdot y) = y \)proofassumes \( \exists ! x.\ x\in A \wedge \phi (x) \)
shows \( \exists a.\ \{x\in A.\ \phi (x)\} = \{a\} \), \( \bigcup \{x\in A.\ \phi (x)\} \in A \), \( \phi (\bigcup \{x\in A.\ \phi (x)\}) \), \( \exists x\in A.\ \phi (x) \)assumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y \)assumes \( \text{IsAquasigroup}(G,A) \)
shows \( \text{ LeftDiv}(G,A):G\times G\rightarrow G \) and \( \text{ RightDiv}(G,A):G\times G\rightarrow G \)assumes \( f:X\rightarrow Y \), \( x\in X \) and \( f = \{\langle x,b(x)\rangle .\ x\in X\} \)
shows \( f(x) = b(x) \) and \( b(x)\in Y \)assumes \( \exists ! x.\ x\in A \wedge \phi (x) \)
shows \( \exists a.\ \{x\in A.\ \phi (x)\} = \{a\} \), \( \bigcup \{x\in A.\ \phi (x)\} \in A \), \( \phi (\bigcup \{x\in A.\ \phi (x)\}) \), \( \exists x\in A.\ \phi (x) \)assumes \( \text{IsAquasigroup}(G,A) \)
shows \( \text{ LeftDiv}(G,A):G\times G\rightarrow G \) and \( \text{ RightDiv}(G,A):G\times G\rightarrow G \)assumes \( x\in G \), \( y\in G \)
shows \( x\cdot y \in G \)assumes \( x\in G \), \( y\in G \)
shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)assumes \( x\in G \), \( y\in G \)
shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)assumes \( x\in G \), \( y\in G \)
shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)assumes \( x\in G \), \( y\in G \), \( z\in G \) and \( y\cdot x = z\cdot x \)
shows \( y=z \)assumes \( x\in G \), \( y\in G \)
shows \( \exists !z.\ z\in G \wedge z\cdot x = y \), \( y/ x \in G \), \( (y/ x)\cdot x = y \) and \( \exists !z.\ z\in G \wedge x\cdot z = y \), \( x\backslash y \in G \), \( x\cdot (x\backslash y) = y \)assumes \( x\in G \), \( y\in G \), \( z\in G \) and \( x\cdot y = x\cdot z \)
shows \( y=z \)