This theory is based on Finite1 theory and is obsolete. It contains properties of finite sets related to order relations. See the FinOrd theory for a better approach.
The goal of this section is to show that finite sets are bounded and have maxima and minima.
Finite set has a maximum - induction step.
lemma Finite_ZF_1_1_L1:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( A\in Fin(X) \) and A4: \( x\in X \) and A5: \( A=0 \vee \text{HasAmaximum}(r,A) \)
shows \( A\cup \{x\} = 0 \vee \text{HasAmaximum}(r,A\cup \{x\}) \)proofFor total and transitive relations finite set has a maximum.
theorem Finite_ZF_1_1_T1A:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( B\in Fin(X) \)
shows \( B=0 \vee \text{HasAmaximum}(r,B) \)proofFinite set has a minimum - induction step.
lemma Finite_ZF_1_1_L2:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( A\in Fin(X) \) and A4: \( x\in X \) and A5: \( A=0 \vee \text{HasAminimum}(r,A) \)
shows \( A\cup \{x\} = 0 \vee \text{HasAminimum}(r,A\cup \{x\}) \)proofFor total and transitive relations finite set has a minimum.
theorem Finite_ZF_1_1_T1B:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( B \in Fin(X) \)
shows \( B=0 \vee \text{HasAminimum}(r,B) \)proofFor transitive and total relations finite sets are bounded.
theorem Finite_ZF_1_T1:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( B\in Fin(X) \)
shows \( \text{IsBounded}(B,r) \)proofFor linearly ordered finite sets maximum and minimum have desired properties. The reason we need linear order is that we need the order to be total and transitive for the finite sets to have a maximum and minimum and then we also need antisymmetry for the maximum and minimum to be unique.
theorem Finite_ZF_1_T2:
assumes A1: \( \text{IsLinOrder}(X,r) \) and A2: \( A \in Fin(X) \) and A3: \( A\neq 0 \)
shows \( \text{Maximum}(r,A) \in A \), \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)proofA special case of Finite_ZF_1_T2 when the set has three elements.
corollary Finite_ZF_1_L2A:
assumes A1: \( \text{IsLinOrder}(X,r) \) and A2: \( a\in X \), \( b\in X \), \( c\in X \)
shows \( \text{Maximum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Minimum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Maximum}(r,\{a,b,c\}) \in X \), \( \text{Minimum}(r,\{a,b,c\}) \in X \), \( \langle a, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle b, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle c, \text{Maximum}(r,\{a,b,c\})\rangle \in r \)proofIf for every element of \(X\) we can find one in \(A\) that is greater, then the \(A\) can not be finite. Works for relations that are total, transitive and antisymmetric.
lemma Finite_ZF_1_1_L3:
assumes A1: \( r \text{ is total on } X \) and A2: \( \text{trans}(r) \) and A3: \( \text{antisym}(r) \) and A4: \( r \subseteq X\times X \) and A5: \( X\neq 0 \) and A6: \( \forall x\in X.\ \exists a\in A.\ x\neq a \wedge \langle x,a\rangle \in r \)
shows \( A \notin Fin(X) \)proofassumes \( r \text{ is total on } X \)
shows \( \text{refl}(X,r) \)assumes \( \text{refl}(X,r) \) and \( a\in X \)
shows \( \text{HasAmaximum}(r,\{a\}) \), \( \text{HasAminimum}(r,\{a\}) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( A\subseteq X \) and \( a\in X \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{HasAmaximum}(r,A\cup \{a\}) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( A\in Fin(X) \) and \( x\in X \) and \( A=0 \vee \text{HasAmaximum}(r,A) \)
shows \( A\cup \{x\} = 0 \vee \text{HasAmaximum}(r,A\cup \{x\}) \)assumes \( P(0) \) and \( B\in Fin(X) \) and \( \forall A\in Fin(X).\ \forall x\in X.\ x\notin A \wedge P(A)\longrightarrow P(A\cup \{x\}) \)
shows \( P(B) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( A\subseteq X \) and \( a\in X \) and \( \text{HasAminimum}(r,A) \)
shows \( \text{HasAminimum}(r,A\cup \{a\}) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( A\in Fin(X) \) and \( x\in X \) and \( A=0 \vee \text{HasAminimum}(r,A) \)
shows \( A\cup \{x\} = 0 \vee \text{HasAminimum}(r,A\cup \{x\}) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B\in Fin(X) \)
shows \( B=0 \vee \text{HasAmaximum}(r,B) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B \in Fin(X) \)
shows \( B=0 \vee \text{HasAminimum}(r,B) \)assumes \( \text{HasAmaximum}(r,A) \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( \text{HasAminimum}(r,A) \)
shows \( \text{IsBoundedBelow}(A,r) \)assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{Maximum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \)
shows \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( \text{IsLinOrder}(X,r) \) and \( A \in Fin(X) \) and \( A\neq 0 \)
shows \( \text{Maximum}(r,A) \in A \), \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( \text{antisym}(r) \) and \( r \subseteq X\times X \) and \( X\neq 0 \) and \( \forall x\in X.\ \exists a\in A.\ x\neq a \wedge \langle x,a\rangle \in r \)
shows \( \neg \text{IsBoundedAbove}(A,r) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B\in Fin(X) \)
shows \( \text{IsBounded}(B,r) \)