Each topological group is a uniform space. This theory is about the unifomities that are naturally defined by a topological group structure.
There are two basic uniformities that can be defined on a topological group.
Definition of left uniformity
definition (in topgroup)
\( \text{ leftUniformity } \equiv \{V\in Pow(G\times G).\ \exists U\in \mathcal{N}_0.\ \{\langle s,t\rangle \in G\times G.\ ( - s) + t \in U\} \subseteq V\} \)
Definition of right uniformity
definition (in topgroup)
\( \text{ rightUniformity } \equiv \{V\in Pow(G\times G).\ \exists U\in \mathcal{N}_0.\ \{\langle s,t\rangle \in G\times G.\ s + ( - t) \in U\}\subseteq V\} \)
Right and left uniformities are indeed uniformities.
lemma (in topgroup) side_uniformities:
shows \( \text{ leftUniformity } \text{ is a uniformity on } G \) and \( \text{ rightUniformity } \text{ is a uniformity on } G \)proofThe topologies generated by the right and left uniformities are the original group topology.
lemma (in topgroup) top_generated_side_uniformities:
shows \( \text{UniformTopology}(\text{ leftUniformity },G) = T \) and \( \text{UniformTopology}(\text{ rightUniformity },G) = T \)proofThe side uniformities are called this way because of how they affect left and right translations. In the next lemma we show that left translations are uniformly continuous with respect to the left uniformity.
lemma (in topgroup) left_mult_uniformity:
assumes \( x\in G \)
shows \( \text{LeftTranslation}(G,f,x) \text{ is uniformly continuous between } \text{ leftUniformity }\text{ and } \text{ leftUniformity } \)proofRight translations are uniformly continuous with respect to the right uniformity.
lemma (in topgroup) right_mult_uniformity:
assumes \( x\in G \)
shows \( \text{RightTranslation}(G,f,x) \text{ is uniformly continuous between } \text{ rightUniformity }\text{ and } \text{ rightUniformity } \)proofThe third uniformity important on topological groups is called the uniformity of Roelcke.
definition (in topgroup)
\( \text{roelckeUniformity} \equiv \{V\in Pow(G\times G).\ \exists U\in \mathcal{N}_0.\ \{\langle s,t\rangle \in G\times G.\ t \in (U + s) + U\}\subseteq V\} \)
The Roelcke uniformity is indeed a uniformity on the group.
lemma (in topgroup) roelcke_uniformity:
shows \( \text{roelckeUniformity} \text{ is a uniformity on } G \)proofThe topology given by the roelcke uniformity is the original topology
lemma (in topgroup) top_generated_roelcke_uniformity:
shows \( \text{UniformTopology}(\text{roelckeUniformity},G) = T \)proofThe inverse map is uniformly continuous in the Roelcke uniformity
theorem (in topgroup) inv_uniform_roelcke:
shows \( \text{GroupInv}(G,f) \text{ is uniformly continuous between } \text{roelckeUniformity}\text{ and } \text{roelckeUniformity} \)proofassumes \( U\subseteq A \) and \( U\in T \)
shows \( U \subseteq int(A) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( V\subseteq G \)
shows \( (-V)\subseteq G \) and \( (-V) = \{ - x.\ x \in V\} \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( ( - x_1) + x_2 = ( - x_3) \)
shows \( x_3 = ( - x_2) + x_1 \)assumes \( H \in \mathcal{N}_0 \)
shows \( (-H) \in \mathcal{N}_0 \)assumes \( U\in \mathcal{N}_0 \)
shows \( \exists V\in \mathcal{N}_0.\ (V\subseteq U\wedge (V + V)\subseteq U \wedge (-V)=V) \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + ( - x_2) = ( - x_3) \)
shows \( x_3 = x_2 + ( - x_1) \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)assumes \( \Phi \text{ is a uniformity on } X \)
shows \( \{\langle x,\{V\{x\}.\ V\in \Phi \}\rangle .\ x\in X\} \text{ is a neighborhood system on } X \)assumes \( g\in G \)
shows \( ( - g) \in G \)assumes \( f:X\rightarrow Y \), \( x\in X \) and \( f = \{\langle x,b(x)\rangle .\ x\in X\} \)
shows \( f(x) = b(x) \) and \( b(x)\in Y \)assumes \( U\in T \) and \( g\in U \)
shows \( ( - g) + U \in \mathcal{N}_0 \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + x_2 = x_1 + x_3 \)
shows \( x_2 = x_3 \)assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \)assumes \( U\in T \) and \( g\in U \)
shows \( U + ( - g) \in \mathcal{N}_0 \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \), \( x_1 + x_2 = x_3 + x_2 \)
shows \( x_1 = x_3 \)assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 = x_1 + x_2 \)
shows \( x_3 + ( - x_2) = x_1 \) and \( ( - x_1) + x_3 = x_2 \)assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(g + H) \) and \( g \in int(g + H) + int(H) \)assumes \( \forall x\in V.\ \exists U\in T.\ (x\in U \wedge U\subseteq V) \)
shows \( V\in T \)assumes \( x_1 \in G \), \( x_2 \in G \)
shows \( x_1 + x_2 \in G \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 = x_1 + x_2 \)
shows \( x_3 + ( - x_2) = x_1 \) and \( ( - x_1) + x_3 = x_2 \)assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(H + g) \) and \( g \in int(H + g) + int(H) \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) : G\rightarrow G \) and \( \text{LeftTranslation}(G,P,g) : G\rightarrow G \)assumes \( f:A\rightarrow B \), \( g:C\rightarrow D \), \( x\in A \), \( y\in C \)
shows \( \text{ProdFunction}(f,g)\langle x,y\rangle = \langle f(x),g(y)\rangle \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) : G\rightarrow G \) and \( \text{LeftTranslation}(G,P,g) : G\rightarrow G \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( f:A\rightarrow B \), \( g:C\rightarrow D \)
shows \( \text{ProdFunction}(f,g):(A\times C)\rightarrow (B\times D) \)assumes \( f:X\rightarrow Y \), \( x\in X \), \( y = f(x) \)
shows \( \langle x,y\rangle \in f \), \( y \in \text{range}(f) \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A)\subseteq X \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) : G\rightarrow G \) and \( \text{LeftTranslation}(G,P,g) : G\rightarrow G \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)assumes \( x\in G \)
shows \( x + V \subseteq G \) and \( V + x \subseteq G \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( V\subseteq G \)
shows \( (-V)\subseteq G \) and \( (-V) = \{ - x.\ x \in V\} \)assumes \( A\subseteq G \), \( B\subseteq G \), \( t \in A + B \)
shows \( \exists s\in A.\ \exists q\in B.\ t=s + q \)assumes \( B\subseteq G \), \( g\in G \), \( t \in B + g \)
shows \( \exists q\in B.\ t=q + g \)assumes \( x_1 \in G \), \( x_2 \in G \), \( x_3 \in G \)
shows \( (x_1 + ( - x_2)) + (x_2 + ( - x_3)) = x_1 + ( - x_3) \), \( (( - x_1) + x_2) + (( - x_2) + x_3) = ( - x_1) + x_3 \), \( ( - (x_1 + x_2)) + (x_1 + x_3) = ( - x_2) + x_3 \), \( (x_1 + x_2) + ( - (x_3 + x_2)) =x_1 + ( - x_3) \), \( ( - x_1) + (x_1 + x_2 + x_3) + ( - x_3) = x_2 \)assumes \( V\subseteq G \), \( x \in (-V) \)
shows \( ( - x) \in V \)assumes \( x\in G \)
shows \( x + V \subseteq G \) and \( V + x \subseteq G \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( V\subseteq G \)
shows \( \text{RightTranslation}(G,P,1 )(V) = V \) and \( \text{LeftTranslation}(G,P,1 )(V) = V \)assumes \( A\subseteq G \), \( 0 \in A \)
shows \( 0 \in A + A \)assumes \( A\subseteq G \), \( B\subseteq G \), \( t=s + q \), \( s\in A \), \( q\in B \)
shows \( t \in A + B \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( g\in G \) and \( A\subseteq G \)
shows \( int(A) + g = int(A + g) \)assumes \( A\subseteq G \), \( B\subseteq G \)
shows \( A + B \subseteq G \), \( A + B = f(A\times B) \), \( A + B = (\bigcup x\in A.\ x + B) \), \( A + B = \{x + y.\ \langle x,y\rangle \in A\times B\} \)assumes \( g\in G \) and \( A\subseteq G \)
shows \( g + int(A) = int(g + A) \)assumes \( T \text{ is a topology } \) and \( \forall A\in \mathcal{A} .\ A \in T \)
shows \( (\bigcup \mathcal{A} ) \in T \)assumes \( g\in G \) and \( H \in \mathcal{N}_0 \)
shows \( g \in int(H + g) \) and \( g \in int(H + g) + int(H) \)assumes \( W\in \mathcal{N}_0 \) and \( x\in G \)
shows \( x + (W + ( - x)) \in \mathcal{N}_0 \) and \( (x + W) + ( - x) \in \mathcal{N}_0 \)assumes \( V\subseteq G \), \( x\in G \)
shows \( x + V = \{x + v.\ v\in V\} \), \( V + x = \{v + x.\ v\in V\} \)assumes \( x\in G \)
shows \( \text{LeftTranslation}(G,P,x)(V) \subseteq G \) and \( \text{RightTranslation}(G,P,x)(V) \subseteq G \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( (a\cdot b)^{-1}\cdot (a\cdot c) = b^{-1}\cdot c \), \( (a\cdot b)\cdot (c\cdot b)^{-1} = a\cdot c^{-1} \), \( a^{-1}\cdot (a\cdot b\cdot c)\cdot c^{-1} = b \), \( a\cdot (b\cdot c^{-1})\cdot c = a\cdot b \), \( a\cdot b^{-1}\cdot (b\cdot c^{-1}) = a\cdot c^{-1} \)assumes \( B\subseteq G \), \( g\in G \), \( q\in B \), \( t=g + q \)
shows \( t \in g + B \)assumes \( A \subseteq (( - x) + B) \), \( x\in G \), \( B\subseteq G \)
shows \( x + A \subseteq B \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( U\in \mathcal{N}_0 \)
shows \( \exists V\in \mathcal{N}_0.\ (V\subseteq U \wedge (-V)=V) \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( V\subseteq G \)
shows \( (-V)\subseteq G \) and \( (-V) = \{ - x.\ x \in V\} \)assumes \( x\in G \)
shows \( x^{-1}\in G \)