In this theory file we consider ordered rings.
This section defines ordered rings and sets up appriopriate notation.
We define ordered ring as a commutative ring with linear order that is preserved by translations and such that the set of nonnegative elements is closed under multiplication. Note that this definition does not guarantee that there are no zero divisors in the ring.
definition
\( \text{IsAnOrdRing}(R,A,M,r) \equiv \) \( ( \text{IsAring}(R,A,M) \wedge (M \text{ is commutative on } R) \wedge \) \( r\subseteq R\times R \wedge \text{IsLinOrder}(R,r) \wedge \) \( (\forall a b.\ \forall c\in R.\ \langle a,b\rangle \in r \longrightarrow \langle A\langle a,c\rangle ,A\langle b,c\rangle \rangle \in r) \wedge \) \( ( \text{Nonnegative}(R,A,r) \text{ is closed under } M)) \)
The next context (locale) defines notation used for ordered rings. We do that by extending the notation defined in the ring0 locale and adding some assumptions to make sure we are talking about ordered rings in this context.
locale ring1 = ring0 +
assumes mult_commut: \( M \text{ is commutative on } R \)
assumes ordincl: \( r \subseteq R\times R \)
assumes linord: \( \text{IsLinOrder}(R,r) \)
defines \( a \leq b \equiv \langle a,b\rangle \in r \)
defines \( a \lt b \equiv a\leq b \wedge a\neq b \)
assumes ordgroup: \( \forall a b.\ \forall c\in R.\ a\leq b \longrightarrow a + c \leq b + c \)
assumes pos_mult_closed: \( \text{Nonnegative}(R,A,r) \text{ is closed under } M \)
defines \( \vert a\vert \equiv \text{AbsoluteValue}(R,A,r)(a) \)
defines \( R_+ \equiv \text{PositiveSet}(R,A,r) \)
The next lemma assures us that we are talking about ordered rings in the ring1 context.
lemma (in ring1) OrdRing_ZF_1_L1:
shows \( \text{IsAnOrdRing}(R,A,M,r) \) using ring0_def, ringAssum, mult_commut, ordincl, linord, ordgroup, pos_mult_closed, IsAnOrdRing_defWe can use theorems proven in the ring1 context whenever we talk about an ordered ring.
lemma OrdRing_ZF_1_L2:
assumes \( \text{IsAnOrdRing}(R,A,M,r) \)
shows \( ring1(R,A,M,r) \) using assms, IsAnOrdRing_def, ring1_axioms.intro, ring0_def, ring1_defIn the ring1 context \(a\leq b\) implies that \(a,b\) are elements of the ring.
lemma (in ring1) OrdRing_ZF_1_L3:
assumes \( a\leq b \)
shows \( a\in R \), \( b\in R \) using assms, ordinclOrdered ring is an ordered group, hence we can use theorems proven in the group3 context.
lemma (in ring1) OrdRing_ZF_1_L4:
shows \( \text{IsAnOrdGroup}(R,A,r) \), \( r \text{ is total on } R \), \( A \text{ is commutative on } R \), \( group3(R,A,r) \)proofThe order relation in rings is transitive.
lemma (in ring1) ring_ord_transitive:
assumes A1: \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)proofTransitivity for the strict order: if \(a
lemma (in ring1) ring_strict_ord_trans:
assumes A1: \( a \lt b \) and A2: \( b\leq c \)
shows \( a \lt c \)proofAnother version of transitivity for the strict order:
if \(a\leq b\) and \(b
lemma (in ring1) ring_strict_ord_transit:
assumes A1: \( a\leq b \) and A2: \( b \lt c \)
shows \( a \lt c \)proofThe next lemma shows what happens when one element of an ordered ring is not greater or equal than another.
lemma (in ring1) OrdRing_ZF_1_L4A:
assumes A1: \( a\in R \), \( b\in R \) and A2: \( \neg (a\leq b) \)
shows \( b \leq a \), \( ( - a) \leq ( - b) \), \( a\neq b \)proofA special case of OrdRing_ZF_1_L4A when one of the constants is \(0\). This is useful for many proofs by cases.
corollary (in ring1) ord_ring_split2:
assumes A1: \( a\in R \)
shows \( a\leq 0 \vee ( 0 \leq a \wedge a\neq 0 ) \)proofTaking minus on both sides reverses an inequality.
lemma (in ring1) OrdRing_ZF_1_L4B:
assumes \( a\leq b \)
shows \( ( - b) \leq ( - a) \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L5The next lemma just expands the condition that requires the set of nonnegative elements to be closed with respect to multiplication. These are properties of totally ordered groups.
lemma (in ring1) OrdRing_ZF_1_L5:
assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a\cdot b \) using pos_mult_closed, assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L2, IsOpClosed_defDouble nonnegative is nonnegative.
lemma (in ring1) OrdRing_ZF_1_L5A:
assumes A1: \( 0 \leq a \)
shows \( 0 \leq 2 \cdot a \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L5G, OrdRing_ZF_1_L3, Ring_ZF_1_L3A sufficient (somewhat redundant) condition for a structure to be an ordered ring. It says that a commutative ring that is a totally ordered group with respect to the additive operation such that set of nonnegative elements is closed under multiplication, is an ordered ring.
lemma OrdRing_ZF_1_L6:
assumes \( \text{IsAring}(R,A,M) \), \( M \text{ is commutative on } R \), \( \text{Nonnegative}(R,A,r) \text{ is closed under } M \), \( \text{IsAnOrdGroup}(R,A,r) \), \( r \text{ is total on } R \)
shows \( \text{IsAnOrdRing}(R,A,M,r) \) using assms, IsAnOrdGroup_def, Order_ZF_1_L3, IsAnOrdRing_def\(a\leq b\) iff \(a-b\leq 0\). This is a fact from OrderedGroup.thy, where it is stated in multiplicative notation.
lemma (in ring1) OrdRing_ZF_1_L7:
assumes \( a\in R \), \( b\in R \)
shows \( a\leq b \longleftrightarrow a - b \leq 0 \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L9Negative times positive is negative.
lemma (in ring1) OrdRing_ZF_1_L8:
assumes A1: \( a\leq 0 \) and A2: \( 0 \leq b \)
shows \( a\cdot b \leq 0 \)proofWe can multiply both sides of an inequality by a nonnegative ring element. This property is sometimes (not here) used to define ordered rings.
lemma (in ring1) OrdRing_ZF_1_L9:
assumes A1: \( a\leq b \) and A2: \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)proofA special case of OrdRing_ZF_1_L9: we can multiply an inequality by a positive ring element.
lemma (in ring1) OrdRing_ZF_1_L9A:
assumes A1: \( a\leq b \) and A2: \( c\in R_+ \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)proofA square is nonnegative.
lemma (in ring1) OrdRing_ZF_1_L10:
assumes A1: \( a\in R \)
shows \( 0 \leq (a^2) \)proof\(1\) is nonnegative.
corollary (in ring1) ordring_one_is_nonneg:
shows \( 0 \leq 1 \)proofIn nontrivial rings one is positive.
lemma (in ring1) ordring_one_is_pos:
assumes \( 0 \neq 1 \)
shows \( 1 \in R_+ \) using assms, Ring_ZF_1_L2, ordring_one_is_nonneg, PositiveSet_defNonnegative is not negative. Property of ordered groups.
lemma (in ring1) OrdRing_ZF_1_L11:
assumes \( 0 \leq a \)
shows \( \neg (a\leq 0 \wedge a\neq 0 ) \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L5ABA negative element cannot be a square.
lemma (in ring1) OrdRing_ZF_1_L12:
assumes A1: \( a\leq 0 \), \( a\neq 0 \)
shows \( \neg (\exists b\in R.\ a = (b^2)) \)proofIf \(a\leq b\), then \(0\leq b-a\).
lemma (in ring1) OrdRing_ZF_1_L13:
assumes \( a\leq b \)
shows \( 0 \leq b - a \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L9DIf \(a
lemma (in ring1) OrdRing_ZF_1_L14:
assumes \( a\leq b \), \( a\neq b \)
shows \( 0 \leq b - a \), \( 0 \neq b - a \), \( b - a \in R_+ \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L9EIf the difference is nonnegative, then \(a\leq b\).
lemma (in ring1) OrdRing_ZF_1_L15:
assumes \( a\in R \), \( b\in R \) and \( 0 \leq b - a \)
shows \( a\leq b \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L9FA nonnegative number is does not decrease when multiplied by a number greater or equal \(1\).
lemma (in ring1) OrdRing_ZF_1_L16:
assumes A1: \( 0 \leq a \) and A2: \( 1 \leq b \)
shows \( a\leq a\cdot b \)proofWe can multiply the right hand side of an inequality between nonnegative ring elements by an element greater or equal \(1\).
lemma (in ring1) OrdRing_ZF_1_L17:
assumes A1: \( 0 \leq a \) and A2: \( a\leq b \) and A3: \( 1 \leq c \)
shows \( a\leq b\cdot c \)proofStrict order is preserved by translations.
lemma (in ring1) ring_strict_ord_trans_inv:
assumes \( a \lt b \) and \( c\in R \)
shows \( a + c \lt b + c \), \( c + a \lt c + b \) using assms, OrdRing_ZF_1_L4, group_strict_ord_transl_invWe can put an element on the other side of a strict inequality, changing its sign.
lemma (in ring1) OrdRing_ZF_1_L18:
assumes \( a\in R \), \( b\in R \) and \( a - b \lt c \)
shows \( a \lt c + b \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L12BWe can add the sides of two inequalities, the first of them strict, and we get a strict inequality. Property of ordered groups.
lemma (in ring1) OrdRing_ZF_1_L19:
assumes \( a \lt b \) and \( c\leq d \)
shows \( a + c \lt b + d \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L12CWe can add the sides of two inequalities, the second of them strict and we get a strict inequality. Property of ordered groups.
lemma (in ring1) OrdRing_ZF_1_L20:
assumes \( a\leq b \) and \( c \lt d \)
shows \( a + c \lt b + d \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L12DAbsolute value is defined for ordered groups as a function that is the identity on the nonnegative set and the negative of the element (the inverse in the multiplicative notation) on the rest. In this section we consider properties of absolute value related to multiplication in ordered rings.
Absolute value of a product is the product of absolute values: the case when both elements of the ring are nonnegative.
lemma (in ring1) OrdRing_ZF_2_L1:
assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( \vert a\cdot b\vert = \vert a\vert \cdot \vert b\vert \) using assms, OrdRing_ZF_1_L5, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L2, OrderedGroup_ZF_3_L2The absolue value of an element and its negative are the same.
lemma (in ring1) OrdRing_ZF_2_L2:
assumes \( a\in R \)
shows \( \vert - a\vert = \vert a\vert \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_3_L7AThe next lemma states that \(|a\cdot (-b)| = |(-a)\cdot b| = |(-a)\cdot (-b)| = |a\cdot b|\).
lemma (in ring1) OrdRing_ZF_2_L3:
assumes \( a\in R \), \( b\in R \)
shows \( \vert ( - a)\cdot b\vert = \vert a\cdot b\vert \), \( \vert a\cdot ( - b)\vert = \vert a\cdot b\vert \), \( \vert ( - a)\cdot ( - b)\vert = \vert a\cdot b\vert \) using assms, Ring_ZF_1_L4, Ring_ZF_1_L7, Ring_ZF_1_L7A, OrdRing_ZF_2_L2This lemma allows to prove theorems for the case of positive and negative elements of the ring separately.
lemma (in ring1) OrdRing_ZF_2_L4:
assumes \( a\in R \) and \( \neg ( 0 \leq a) \)
shows \( 0 \leq ( - a) \), \( 0 \neq a \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L8AAbsolute value of a product is the product of absolute values.
lemma (in ring1) OrdRing_ZF_2_L5:
assumes A1: \( a\in R \), \( b\in R \)
shows \( \vert a\cdot b\vert = \vert a\vert \cdot \vert b\vert \)proofTriangle inequality. Property of linearly ordered abelian groups.
lemma (in ring1) ord_ring_triangle_ineq:
assumes \( a\in R \), \( b\in R \)
shows \( \vert a + b\vert \leq \vert a\vert + \vert b\vert \) using assms, OrdRing_ZF_1_L4, OrdGroup_triangle_ineqIf \(a\leq c\) and \(b\leq c\), then \(a+b\leq 2\cdot c\).
lemma (in ring1) OrdRing_ZF_2_L6:
assumes \( a\leq c \), \( b\leq c \)
shows \( a + b \leq 2 \cdot c \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L5B, OrdRing_ZF_1_L3, Ring_ZF_1_L3This section is about properties of the set of positive elements \( R_+ \).
The set of positive elements is closed under ring addition. This is a property of ordered groups, we just reference a theorem from OrderedGroup_ZF theory in the proof.
lemma (in ring1) OrdRing_ZF_3_L1:
shows \( R_+ \text{ is closed under } A \) using OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L13Every element of a ring can be either in the postitive set, equal to zero or its opposite (the additive inverse) is in the positive set. This is a property of ordered groups, we just reference a theorem from OrderedGroup_ZF theory.
lemma (in ring1) OrdRing_ZF_3_L2:
assumes \( a\in R \)
shows \( \text{Exactly_1_of_3_holds} (a= 0 , a\in R_+, ( - a) \in R_+) \) using assms, OrdRing_ZF_1_L4, OrdGroup_decompIf a ring element \(a\neq 0\), and it is not positive, then \(-a\) is positive.
lemma (in ring1) OrdRing_ZF_3_L2A:
assumes \( a\in R \), \( a\neq 0 \), \( a \notin R_+ \)
shows \( ( - a) \in R_+ \) using assms, OrdRing_ZF_1_L4, OrdGroup_cases\( R_+ \) is closed under multiplication iff the ring has no zero divisors.
lemma (in ring1) OrdRing_ZF_3_L3:
shows \( (R_+ \text{ is closed under } M)\longleftrightarrow \text{HasNoZeroDivs}(R,A,M) \)proofAnother (in addition to OrdRing_ZF_1_L6 sufficient condition that defines order in an ordered ring starting from the positive set.
theorem (in ring0) ring_ord_by_positive_set:
assumes A1: \( M \text{ is commutative on } R \) and A2: \( P\subseteq R \), \( P \text{ is closed under } A \), \( 0 \notin P \) and A3: \( \forall a\in R.\ a\neq 0 \longrightarrow (a\in P) \text{ Xor } (( - a) \in P) \) and A4: \( P \text{ is closed under } M \) and A5: \( r = \text{OrderFromPosSet}(R,A,P) \)
shows \( \text{IsAnOrdGroup}(R,A,r) \), \( \text{IsAnOrdRing}(R,A,M,r) \), \( r \text{ is total on } R \), \( \text{PositiveSet}(R,A,r) = P \), \( \text{Nonnegative}(R,A,r) = P \cup \{ 0 \} \), \( \text{HasNoZeroDivs}(R,A,M) \)proofNontrivial ordered rings are infinite. More precisely we assume that the neutral element of the additive operation is not equal to the multiplicative neutral element and show that the the set of positive elements of the ring is not a finite subset of the ring and the ring is not a finite subset of itself.
theorem (in ring1) ord_ring_infinite:
assumes \( 0 \neq 1 \)
shows \( R_+ \notin Fin(R) \), \( R \notin Fin(R) \) using assms, Ring_ZF_1_L17, OrdRing_ZF_1_L4, Linord_group_infiniteIf every element of a nontrivial ordered ring can be dominated by an element from \(B\), then we \(B\) is not bounded and not finite.
lemma (in ring1) OrdRing_ZF_3_L4:
assumes \( 0 \neq 1 \) and \( \forall a\in R.\ \exists b\in B.\ a\leq b \)
shows \( \neg \text{IsBoundedAbove}(B,r) \), \( B \notin Fin(R) \) using assms, Ring_ZF_1_L17, OrdRing_ZF_1_L4, OrderedGroup_ZF_2_L2AIf \(m\) is greater or equal the multiplicative unit, then the set \(\{m\cdot n: n\in R\}\) is infinite (unless the ring is trivial).
lemma (in ring1) OrdRing_ZF_3_L5:
assumes A1: \( 0 \neq 1 \) and A2: \( 1 \leq m \)
shows \( \{m\cdot x.\ x\in R_+\} \notin Fin(R) \), \( \{m\cdot x.\ x\in R\} \notin Fin(R) \), \( \{( - m)\cdot x.\ x\in R\} \notin Fin(R) \)proofIf \(m\) is less or equal than the negative of multiplicative unit, then the set \(\{m\cdot n: n\in R\}\) is infinite (unless the ring is trivial).
lemma (in ring1) OrdRing_ZF_3_L6:
assumes A1: \( 0 \neq 1 \) and A2: \( m \leq - 1 \)
shows \( \{m\cdot x.\ x\in R\} \notin Fin(R) \)proofAll elements greater or equal than an element of \( R_+ \) belong to \( R_+ \). Property of ordered groups.
lemma (in ring1) OrdRing_ZF_3_L7:
assumes A1: \( a \in R_+ \) and A2: \( a\leq b \)
shows \( b \in R_+ \)proofA special case of OrdRing_ZF_3_L7: a ring element greater or equal than \(1\) is positive.
corollary (in ring1) OrdRing_ZF_3_L8:
assumes A1: \( 0 \neq 1 \) and A2: \( 1 \leq a \)
shows \( a \in R_+ \)proofAdding a positive element to \(a\) strictly increases \(a\). Property of ordered groups.
lemma (in ring1) OrdRing_ZF_3_L9:
assumes A1: \( a\in R \), \( b\in R_+ \)
shows \( a \leq a + b \), \( a \neq a + b \) using assms, OrdRing_ZF_1_L4, OrderedGroup_ZF_1_L22A special case of OrdRing_ZF_3_L9: in nontrivial rings adding one to \(a\) increases \(a\).
corollary (in ring1) OrdRing_ZF_3_L10:
assumes A1: \( 0 \neq 1 \) and A2: \( a\in R \)
shows \( a \leq a + 1 \), \( a \neq a + 1 \) using assms, ordring_one_is_pos, OrdRing_ZF_3_L9If \(a\) is not greater than \(b\), then it is strictly less than \(b+1\).
lemma (in ring1) OrdRing_ZF_3_L11:
assumes A1: \( 0 \neq 1 \) and A2: \( a\leq b \)
shows \( a \lt b + 1 \)proofFor any ring element \(a\) the greater of \(a\) and \(1\) is a positive element that is greater or equal than \(m\). If we add \(1\) to it we get a positive element that is strictly greater than \(m\). This holds in nontrivial rings.
lemma (in ring1) OrdRing_ZF_3_L12:
assumes A1: \( 0 \neq 1 \) and A2: \( a\in R \)
shows \( a \leq \text{GreaterOf}(r,1 ,a) \), \( \text{GreaterOf}(r,1 ,a) \in R_+ \), \( \text{GreaterOf}(r,1 ,a) + 1 \in R_+ \), \( a \leq \text{GreaterOf}(r,1 ,a) + 1 \), \( a \neq \text{GreaterOf}(r,1 ,a) + 1 \)proofWe can multiply strict inequality by a positive element.
lemma (in ring1) OrdRing_ZF_3_L13:
assumes A1: \( \text{HasNoZeroDivs}(R,A,M) \) and A2: \( a \lt b \) and A3: \( c\in R_+ \)
shows \( a\cdot c \lt b\cdot c \), \( c\cdot a \lt c\cdot b \)proofA sufficient condition for an element to be in the set of positive ring elements.
lemma (in ring1) OrdRing_ZF_3_L14:
assumes \( 0 \leq a \) and \( a\neq 0 \)
shows \( a \in R_+ \) using assms, OrdRing_ZF_1_L3, PositiveSet_defIf a ring has no zero divisors, the square of a nonzero element is positive.
lemma (in ring1) OrdRing_ZF_3_L15:
assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a\in R \), \( a\neq 0 \)
shows \( 0 \leq a^2 \), \( a^2 \neq 0 \), \( a^2 \in R_+ \) using assms, OrdRing_ZF_1_L10, Ring_ZF_1_L12, OrdRing_ZF_3_L14In rings with no zero divisors we can (strictly) increase a positive element by multiplying it by an element that is greater than \(1\).
lemma (in ring1) OrdRing_ZF_3_L16:
assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a \in R_+ \) and \( 1 \leq b \), \( 1 \neq b \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \) using assms, PositiveSet_def, OrdRing_ZF_1_L16, OrdRing_ZF_1_L3, Ring_ZF_1_L12CIf the right hand side of an inequality is positive we can multiply it by a number that is greater than one.
lemma (in ring1) OrdRing_ZF_3_L17:
assumes A1: \( \text{HasNoZeroDivs}(R,A,M) \) and A2: \( b\in R_+ \) and A3: \( a\leq b \) and A4: \( 1 \lt c \)
shows \( a \lt b\cdot c \)proofWe can multiply a right hand side of an inequality between positive numbers by a number that is greater than one.
lemma (in ring1) OrdRing_ZF_3_L18:
assumes A1: \( \text{HasNoZeroDivs}(R,A,M) \) and A2: \( a \in R_+ \) and A3: \( a\leq b \) and A4: \( 1 \lt c \)
shows \( a \lt b\cdot c \)proofIn ordered rings with no zero divisors if at least one of \(a,b\) is not zero, then \(0 < a^2+b^2\), in particular \(a^2+b^2\neq 0\).
lemma (in ring1) OrdRing_ZF_3_L19:
assumes A1: \( \text{HasNoZeroDivs}(R,A,M) \) and A2: \( a\in R \), \( b\in R \) and A3: \( a \neq 0 \vee b \neq 0 \)
shows \( 0 \lt a^2 + b^2 \)proofassumes \( a\leq b \)
shows \( a\in R \), \( b\in R \)assumes \( \text{IsLinOrder}(X,r) \)
shows \( \text{IsPartOrder}(X,r) \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( a \lt b \) and \( b\leq c \)
shows \( a \lt c \)assumes \( a\leq b \) and \( b \lt c \)
shows \( a \lt c \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \neg (a\leq b) \)
shows \( b \leq a \), \( a^{-1} \leq b^{-1} \), \( a\neq b \), \( b \lt a \)assumes \( a\in R \), \( b\in R \) and \( \neg (a\leq b) \)
shows \( b \leq a \), \( ( - a) \leq ( - b) \), \( a\neq b \)assumes \( a\leq b \)
shows \( b^{-1}\leq a^{-1} \)assumes \( a\leq b \) and \( 1 \leq c \)
shows \( a\leq b\cdot c \), \( a\leq c\cdot b \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( \text{IsPartOrder}(X,r) \) and \( r \text{ is total on } X \)
shows \( \text{IsLinOrder}(X,r) \)assumes \( a\in G \), \( b\in G \)
shows \( a\leq b \longleftrightarrow a\cdot b^{-1} \leq 1 \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( a\leq 1 \)
shows \( 1 \leq a^{-1} \)assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a\cdot b \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot b = a\cdot ( - b) \)assumes \( a\in G \) and \( 1 \leq a^{-1} \)
shows \( a\leq 1 \)assumes \( a\in R \), \( b\in R \)
shows \( a\leq b \longleftrightarrow a - b \leq 0 \)assumes \( a\leq 0 \) and \( 0 \leq b \)
shows \( a\cdot b \leq 0 \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( \neg (1 \leq a) \)
shows \( 1 \leq a^{-1} \), \( 1 \neq a \), \( a\leq 1 \)assumes \( a\in R \)
shows \( ( - a)^2 = ((a)^2) \)assumes \( a\in R \)
shows \( 0 \leq (a^2) \)assumes \( 1 \leq a \)
shows \( a^{-1}\leq 1 \) and \( \neg (a\leq 1 \wedge a\neq 1 ) \)assumes \( 0 \leq a \)
shows \( \neg (a\leq 0 \wedge a\neq 0 ) \)assumes \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)assumes \( a\leq b \), \( a\neq b \)
shows \( 1 \leq b\cdot a^{-1} \), \( 1 \neq b\cdot a^{-1} \), \( b\cdot a^{-1} \in G_+ \)assumes \( a\in G \), \( b\in G \) and \( 1 \leq b\cdot a^{-1} \)
shows \( a\leq b \)assumes \( a\leq b \)
shows \( 0 \leq b - a \)assumes \( a\in R \), \( b\in R \) and \( 0 \leq b - a \)
shows \( a\leq b \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( 0 \leq a \) and \( 1 \leq b \)
shows \( a\leq a\cdot b \)assumes \( a \lt b \) and \( c\in G \)
shows \( a\cdot c \lt b\cdot c \) and \( c\cdot a \lt c\cdot b \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} \lt c \)
shows \( a \lt c\cdot b \)assumes \( a \lt b \) and \( c\leq d \)
shows \( a\cdot c \lt b\cdot d \)assumes \( a\leq b \) and \( c \lt d \)
shows \( a\cdot c \lt b\cdot d \)assumes \( a\in G^+ \)
shows \( \vert a\vert = a \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a^{-1}\vert = \vert a\vert \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot ( - b) = a\cdot b \)assumes \( a\in R \)
shows \( \vert - a\vert = \vert a\vert \)assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( \vert a\cdot b\vert = \vert a\vert \cdot \vert b\vert \)assumes \( a\in R \) and \( \neg ( 0 \leq a) \)
shows \( 0 \leq ( - a) \), \( 0 \neq a \)assumes \( a\in R \), \( b\in R \)
shows \( \vert ( - a)\cdot b\vert = \vert a\cdot b\vert \), \( \vert a\cdot ( - b)\vert = \vert a\cdot b\vert \), \( \vert ( - a)\cdot ( - b)\vert = \vert a\cdot b\vert \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b\vert \leq \vert a\vert \cdot \vert b\vert \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \text{Exactly_1_of_3_holds} (a=1 ,a\in G_+,a^{-1}\in G_+) \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( a\neq 1 \), \( a\notin G_+ \)
shows \( a^{-1} \in G_+ \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a\in R \), \( a\neq 0 \), \( b\in R \), \( b\neq 0 \)
shows \( a\cdot b\neq 0 \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( a\neq 1 \)
shows \( \vert a\vert \in G_+ \)assumes \( a\in R \), \( b\in R \)
shows \( \vert a\cdot b\vert = \vert a\vert \cdot \vert b\vert \)assumes \( P \text{ is commutative on } G \) and \( H\subseteq G \), \( H \text{ is closed under } P \), \( 1 \notin H \) and \( \forall a\in G.\ a\neq 1 \longrightarrow (a\in H) \text{ Xor } (a^{-1}\in H) \)
shows \( \text{IsAnOrdGroup}(G,P, \text{OrderFromPosSet}(G,P,H)) \), \( \text{OrderFromPosSet}(G,P,H) \text{ is total on } G \), \( \text{PositiveSet}(G,P, \text{OrderFromPosSet}(G,P,H)) = H \), \( \text{Nonnegative}(G,P, \text{OrderFromPosSet}(G,P,H)) = H \cup \{1 \} \)assumes \( H \subseteq R \) and \( H \text{ is closed under } M \)
shows \( (H \cup \{ 0 \}) \text{ is closed under } M \)assumes \( \text{IsAring}(R,A,M) \), \( M \text{ is commutative on } R \), \( \text{Nonnegative}(R,A,r) \text{ is closed under } M \), \( \text{IsAnOrdGroup}(R,A,r) \), \( r \text{ is total on } R \)
shows \( \text{IsAnOrdRing}(R,A,M,r) \)assumes \( \text{IsAnOrdRing}(R,A,M,r) \)
shows \( ring1(R,A,M,r) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \)
shows \( G_+ \notin Fin(G) \), \( G \notin Fin(G) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( \forall a\in G.\ \exists b\in A.\ a\leq b \)
shows \( \forall a\in G.\ \exists b\in A.\ a\neq b \wedge a\leq b \), \( \neg \text{IsBoundedAbove}(A,r) \), \( A \notin Fin(G) \)assumes \( a\in R \)
shows \( a\leq 0 \vee ( 0 \leq a \wedge a\neq 0 ) \)assumes \( 0 \neq 1 \)
shows \( 1 \in R_+ \)assumes \( 0 \neq 1 \) and \( \forall a\in R.\ \exists b\in B.\ a\leq b \)
shows \( \neg \text{IsBoundedAbove}(B,r) \), \( B \notin Fin(R) \)assumes \( m\in R \)
shows \( \{m\cdot x.\ x\in R\} = \{( - m)\cdot x.\ x\in R\} \)assumes \( a\leq b \)
shows \( ( - b) \leq ( - a) \)assumes \( 0 \neq 1 \) and \( 1 \leq m \)
shows \( \{m\cdot x.\ x\in R_+\} \notin Fin(R) \), \( \{m\cdot x.\ x\in R\} \notin Fin(R) \), \( \{( - m)\cdot x.\ x\in R\} \notin Fin(R) \)assumes \( a \in G_+ \) and \( a\leq b \)
shows \( b \in G_+ \)assumes \( a \in R_+ \) and \( a\leq b \)
shows \( b \in R_+ \)assumes \( a\in G \), \( b\in G_+ \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \), \( a\cdot b \in G \)assumes \( a\in R \), \( b\in R_+ \)
shows \( a \leq a + b \), \( a \neq a + b \)assumes \( 0 \neq 1 \) and \( a\in R \)
shows \( a \leq a + 1 \), \( a \neq a + 1 \)assumes \( a\leq b \) and \( b \lt c \)
shows \( a \lt c \)assumes \( r \text{ is total on } X \) and \( x\in X \), \( y\in X \)
shows \( \langle x, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle y, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),x\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),y\rangle \in r \)assumes \( 0 \neq 1 \) and \( 1 \leq a \)
shows \( a \in R_+ \)assumes \( 0 \neq 1 \) and \( a\leq b \)
shows \( a \lt b + 1 \)assumes \( a\leq b \) and \( c\in R_+ \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a\in R \), \( b\in R \), \( c\in R \) and \( a\cdot c = b\cdot c \) and \( c\neq 0 \)
shows \( a=b \)assumes \( 0 \leq a \) and \( a\neq 0 \)
shows \( a \in R_+ \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a\in R \), \( b\in R \) and \( 0 \neq a \), \( 1 \neq b \)
shows \( a \neq a\cdot b \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a \in R_+ \) and \( 1 \leq b \), \( 1 \neq b \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( b\in R_+ \) and \( a\leq b \) and \( 1 \lt c \)
shows \( a \lt b\cdot c \)assumes \( \text{HasNoZeroDivs}(R,A,M) \) and \( a\in R \), \( a\neq 0 \)
shows \( 0 \leq a^2 \), \( a^2 \neq 0 \), \( a^2 \in R_+ \)assumes \( a \lt b \) and \( c\leq d \)
shows \( a + c \lt b + d \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)