This theory file defines and shows the basic properties of (partially or linearly) ordered groups. We show that in linearly ordered groups finite sets are bounded and provide a sufficient condition for bounded sets to be finite. This allows to show in Int_ZF_IML.thy that subsets of integers are bounded iff they are finite. Some theorems proven here are properties of ordered loops rather that groups. However, for now the development is independent from the material in the OrderedLoop_ZF theory, we just import the definitions of NonnegativeSet and PositiveSet from there.
This section defines ordered groups and various related notions.
An ordered group is a group equipped with a partial order that is "translation invariant", that is if \(a\leq b\) then \(a\cdot g \leq b\cdot g\) and \(g\cdot a \leq g\cdot b\).
definition
\( \text{IsAnOrdGroup}(G,P,r) \equiv \) \( ( \text{IsAgroup}(G,P) \wedge r\subseteq G\times G \wedge \text{IsPartOrder}(G,r) \wedge (\forall g\in G.\ \forall a b.\ \) \( \langle a,b\rangle \in r \longrightarrow \langle P\langle a,g\rangle ,P\langle b,g\rangle \rangle \in r \wedge \langle P\langle g,a\rangle ,P\langle g,b\rangle \rangle \in r ) ) \)
We also define the absolute value as a ZF-function that is the identity on \(G^+\) and the group inverse on the rest of the group.
definition
\( \text{AbsoluteValue}(G,P,r) \equiv id( \text{Nonnegative}(G,P,r)) \cup \) \( \text{restrict}( \text{GroupInv}(G,P),G - \text{Nonnegative}(G,P,r)) \)
The odd functions are defined as those having property \(f(a^{-1})=(f(a))^{-1}\). This looks a bit strange in the multiplicative notation, I have to admit. For linearly ordered groups a function \(f\) defined on the set of positive elements iniquely defines an odd function of the whole group. This function is called an odd extension of \(f\)
definition
\( \text{OddExtension}(G,P,r,f) \equiv \) \( (f \cup \{\langle a, \text{GroupInv}(G,P)(f( \text{GroupInv}(G,P)(a)))\rangle .\ \) \( a \in \text{GroupInv}(G,P)( \text{PositiveSet}(G,P,r))\} \cup \) \( \{\langle \text{ TheNeutralElement}(G,P),\text{ TheNeutralElement}(G,P)\rangle \}) \)
We will use a similar notation for ordered groups as for the generic groups. \( G^+ \) denotes the set of nonnegative elements (that satisfy \(1\leq a\)) and \( G_+ \) is the set of (strictly) positive elements. \( -A \) is the set inverses of elements from \(A\). I hope that using additive notation for this notion is not too shocking here. The symbol \( f^\circ \) denotes the odd extension of \(f\). For a function defined on \(G_+\) this is the unique odd function on \(G\) that is equal to \(f\) on \(G_+\).
locale group3
assumes ordGroupAssum: \( \text{IsAnOrdGroup}(G,P,r) \)
defines \( 1 \equiv \text{ TheNeutralElement}(G,P) \)
defines \( a \cdot b \equiv P\langle a,b\rangle \)
defines \( x^{-1} \equiv \text{GroupInv}(G,P)(x) \)
defines \( a \leq b \equiv \langle a,b\rangle \in r \)
defines \( a \lt b \equiv a\leq b \wedge a\neq b \)
defines \( G^+ \equiv \text{Nonnegative}(G,P,r) \)
defines \( G_+ \equiv \text{PositiveSet}(G,P,r) \)
defines \( -A \equiv \text{GroupInv}(G,P)(A) \)
defines \( \vert a\vert \equiv \text{AbsoluteValue}(G,P,r)(a) \)
defines \( f^\circ \equiv \text{OddExtension}(G,P,r,f) \)
In group3 context we can use the theorems proven in the group0 context.
lemma (in group3) OrderedGroup_ZF_1_L1:
shows \( group0(G,P) \) using ordGroupAssum, IsAnOrdGroup_def, group0_defOrdered group (carrier) is not empty. This is a property of monoids, but it is good to have it handy in the group3 context.
lemma (in group3) OrderedGroup_ZF_1_L1A:
shows \( G\neq 0 \) using OrderedGroup_ZF_1_L1, group0_2_L1, group0_1_L3AThe next lemma is just to see the definition of the nonnegative set in our notation.
lemma (in group3) OrderedGroup_ZF_1_L2:
shows \( g\in G^+ \longleftrightarrow 1 \leq g \) using ordGroupAssum, IsAnOrdGroup_def, Nonnegative_defThe next lemma is just to see the definition of the positive set in our notation.
lemma (in group3) OrderedGroup_ZF_1_L2A:
shows \( g\in G_+ \longleftrightarrow (1 \leq g \wedge g\neq 1 ) \) using ordGroupAssum, IsAnOrdGroup_def, PositiveSet_defFor total order if \(g\) is not in \(G^{+}\), then it has to be less or equal the unit.
lemma (in group3) OrderedGroup_ZF_1_L2B:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G-G^+ \)
shows \( a\leq 1 \)proofThe group order is reflexive.
lemma (in group3) OrderedGroup_ZF_1_L3:
assumes \( g\in G \)
shows \( g\leq g \) using ordGroupAssum, assms, IsAnOrdGroup_def, IsPartOrder_def, refl_def\(1\) is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L3A:
shows \( 1 \in G^+ \) using OrderedGroup_ZF_1_L2, OrderedGroup_ZF_1_L3, OrderedGroup_ZF_1_L1, group0_2_L2In this context \(a \leq b\) implies that both \(a\) and \(b\) belong to \(G\).
lemma (in group3) OrderedGroup_ZF_1_L4:
assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \) using ordGroupAssum, assms, IsAnOrdGroup_defSimilarly in this context \(a \le b\) implies that both \(a\) and \(b\) belong to \(G\).
lemma (in group3) less_are_members:
assumes \( a \lt b \)
shows \( a\in G \), \( b\in G \) using ordGroupAssum, assms, IsAnOrdGroup_defIt is good to have transitivity handy.
lemma (in group3) Group_order_transitive:
assumes A1: \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)proofThe order in an ordered group is antisymmetric.
lemma (in group3) group_order_antisym:
assumes A1: \( a\leq b \), \( b\leq a \)
shows \( a=b \)proofTransitivity for the strict order: if \(a < b\) and \(b\leq c\), then \(a < c\).
lemma (in group3) OrderedGroup_ZF_1_L4A:
assumes A1: \( a \lt b \) and A2: \( b\leq c \)
shows \( a \lt c \)proofAnother version of transitivity for the strict order: if \(a\leq b\) and \(b < c\), then \(a < c\).
lemma (in group3) group_strict_ord_transit:
assumes A1: \( a\leq b \) and A2: \( b \lt c \)
shows \( a \lt c \)proofThe order is translation invariant.
lemma (in group3) ord_transl_inv:
assumes \( a\leq b \), \( c\in G \)
shows \( a\cdot c \leq b\cdot c \) and \( c\cdot a \leq c\cdot b \) using ordGroupAssum, assms unfolding IsAnOrdGroup_defStrict order is preserved by translations.
lemma (in group3) group_strict_ord_transl_inv:
assumes \( a \lt b \) and \( c\in G \)
shows \( a\cdot c \lt b\cdot c \) and \( c\cdot a \lt c\cdot b \) using assms, ord_transl_inv, OrderedGroup_ZF_1_L4, OrderedGroup_ZF_1_L1, group0_2_L19If the group order is total, then the group is ordered linearly.
lemma (in group3) group_ord_total_is_lin:
assumes \( r \text{ is total on } G \)
shows \( \text{IsLinOrder}(G,r) \) using assms, ordGroupAssum, IsAnOrdGroup_def, Order_ZF_1_L3For linearly ordered groups elements in the nonnegative set are greater than those in the complement.
lemma (in group3) OrderedGroup_ZF_1_L4B:
assumes \( r \text{ is total on } G \) and \( a\in G^+ \) and \( b \in G-G^+ \)
shows \( b\leq a \)proofIf \(a\leq 1\) and \(a\neq 1\), then \(a \in G\setminus G^{+}\).
lemma (in group3) OrderedGroup_ZF_1_L4C:
assumes A1: \( a\leq 1 \) and A2: \( a\neq 1 \)
shows \( a \in G-G^+ \)proofAn element smaller than an element in \(G\setminus G^+\) is in \(G\setminus G^+\).
lemma (in group3) OrderedGroup_ZF_1_L4D:
assumes A1: \( a\in G-G^+ \) and A2: \( b\leq a \)
shows \( b\in G-G^+ \)proofThe nonnegative set is contained in the group.
lemma (in group3) OrderedGroup_ZF_1_L4E:
shows \( G^+ \subseteq G \) using OrderedGroup_ZF_1_L2, OrderedGroup_ZF_1_L4The positive set is contained in the nonnegative set, hence in the group.
lemma (in group3) pos_set_in_gr:
shows \( G_+ \subseteq G^+ \) and \( G_+ \subseteq G \) using OrderedGroup_ZF_1_L2A, OrderedGroup_ZF_1_L2, OrderedGroup_ZF_1_L4ETaking the inverse on both sides reverses the inequality.
lemma (in group3) OrderedGroup_ZF_1_L5:
assumes A1: \( a\leq b \)
shows \( b^{-1}\leq a^{-1} \)proofIf an element is smaller that the unit, then its inverse is greater.
lemma (in group3) OrderedGroup_ZF_1_L5A:
assumes A1: \( a\leq 1 \)
shows \( 1 \leq a^{-1} \)proofIf an the inverse of an element is greater that the unit, then the element is smaller.
lemma (in group3) OrderedGroup_ZF_1_L5AA:
assumes A1: \( a\in G \) and A2: \( 1 \leq a^{-1} \)
shows \( a\leq 1 \)proofIf an element is nonnegative, then the inverse is not greater that the unit. Also shows that nonnegative elements cannot be negative
lemma (in group3) OrderedGroup_ZF_1_L5AB:
assumes A1: \( 1 \leq a \)
shows \( a^{-1}\leq 1 \) and \( \neg (a\leq 1 \wedge a\neq 1 ) \)proofIf two elements are greater or equal than the unit, then the inverse of one is not greater than the other.
lemma (in group3) OrderedGroup_ZF_1_L5AC:
assumes A1: \( 1 \leq a \), \( 1 \leq b \)
shows \( a^{-1} \leq b \)proofThis section developes some simple tools to deal with inequalities.
Taking negative on both sides reverses the inequality, case with an inverse on one side.
lemma (in group3) OrderedGroup_ZF_1_L5AD:
assumes A1: \( b \in G \) and A2: \( a\leq b^{-1} \)
shows \( b \leq a^{-1} \)proofWe can cancel the same element on both sides of an inequality.
lemma (in group3) OrderedGroup_ZF_1_L5AE:
assumes A1: \( a\in G \), \( b\in G \), \( c\in G \) and A2: \( a\cdot b \leq a\cdot c \)
shows \( b\leq c \)proofWe can cancel the same element on both sides of an inequality, right side.
lemma (in group3) ineq_cancel_right:
assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\cdot b \leq c\cdot b \)
shows \( a\leq c \)proofWe can cancel the same element on both sides of an inequality, a version with an inverse on both sides.
lemma (in group3) OrderedGroup_ZF_1_L5AF:
assumes A1: \( a\in G \), \( b\in G \), \( c\in G \) and A2: \( a\cdot b^{-1} \leq a\cdot c^{-1} \)
shows \( c\leq b \)proofTaking negative on both sides reverses the inequality, another case with an inverse on one side.
lemma (in group3) OrderedGroup_ZF_1_L5AG:
assumes A1: \( a \in G \) and A2: \( a^{-1}\leq b \)
shows \( b^{-1} \leq a \)proofWe can multiply the sides of two inequalities.
lemma (in group3) OrderedGroup_ZF_1_L5B:
assumes A1: \( a\leq b \) and A2: \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)proofWe can replace first of the factors on one side of an inequality with a greater one.
lemma (in group3) OrderedGroup_ZF_1_L5C:
assumes A1: \( c\in G \) and A2: \( a\leq b\cdot c \) and A3: \( b\leq b_1 \)
shows \( a\leq b_1\cdot c \)proofWe can replace second of the factors on one side of an inequality with a greater one.
lemma (in group3) OrderedGroup_ZF_1_L5D:
assumes A1: \( b\in G \) and A2: \( a \leq b\cdot c \) and A3: \( c\leq b_1 \)
shows \( a \leq b\cdot b_1 \)proofWe can replace factors on one side of an inequality with greater ones.
lemma (in group3) OrderedGroup_ZF_1_L5E:
assumes A1: \( a \leq b\cdot c \) and A2: \( b\leq b_1 \), \( c\leq c_1 \)
shows \( a \leq b_1\cdot c_1 \)proofWe don't decrease an element of the group by multiplying by one that is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L5F:
assumes A1: \( 1 \leq a \) and A2: \( b\in G \)
shows \( b\leq a\cdot b \), \( b\leq b\cdot a \)proofWe can multiply the right hand side of an inequality by a nonnegative element.
lemma (in group3) OrderedGroup_ZF_1_L5G:
assumes A1: \( a\leq b \) and A2: \( 1 \leq c \)
shows \( a\leq b\cdot c \), \( a\leq c\cdot b \)proofWe can put two elements on the other side of inequality, changing their sign.
lemma (in group3) OrderedGroup_ZF_1_L5H:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( a\cdot b^{-1} \leq c \)
shows \( a \leq c\cdot b \), \( c^{-1}\cdot a \leq b \)proofWe can multiply the sides of one inequality by inverse of another.
lemma (in group3) OrderedGroup_ZF_1_L5I:
assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot d^{-1} \leq b\cdot c^{-1} \) using assms, OrderedGroup_ZF_1_L5, OrderedGroup_ZF_1_L5BWe can put an element on the other side of an inequality changing its sign, version with the inverse.
lemma (in group3) OrderedGroup_ZF_1_L5J:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( c \leq a\cdot b^{-1} \)
shows \( c\cdot b \leq a \)proofWe can put an element on the other side of an inequality changing its sign, version with the inverse.
lemma (in group3) OrderedGroup_ZF_1_L5JA:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( c \leq a^{-1}\cdot b \)
shows \( a\cdot c\leq b \)proofA special case of OrderedGroup_ZF_1_L5J where \(c=1\).
corollary (in group3) OrderedGroup_ZF_1_L5K:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( 1 \leq a\cdot b^{-1} \)
shows \( b \leq a \)proofA special case of OrderedGroup_ZF_1_L5JA where \(c=1\).
corollary (in group3) OrderedGroup_ZF_1_L5KA:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( 1 \leq a^{-1}\cdot b \)
shows \( a \leq b \)proofIf the order is total, the elements that do not belong to the positive set are negative. We also show here that the group inverse of an element that does not belong to the nonnegative set does belong to the nonnegative set.
lemma (in group3) OrderedGroup_ZF_1_L6:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G-G^+ \)
shows \( a\leq 1 \), \( a^{-1} \in G^+ \), \( \text{restrict}( \text{GroupInv}(G,P),G-G^+)(a) \in G^+ \)proofIf a property is invariant with respect to taking the inverse and it is true on the nonnegative set, than it is true on the whole group.
lemma (in group3) OrderedGroup_ZF_1_L7:
assumes A1: \( r \text{ is total on } G \) and A2: \( \forall a\in G^+.\ \forall b\in G^+.\ Q(a,b) \) and A3: \( \forall a\in G.\ \forall b\in G.\ Q(a,b)\longrightarrow Q(a^{-1},b) \) and A4: \( \forall a\in G.\ \forall b\in G.\ Q(a,b)\longrightarrow Q(a,b^{-1}) \) and A5: \( a\in G \), \( b\in G \)
shows \( Q(a,b) \)proofA lemma about splitting the ordered group "plane" into 6 subsets. Useful for proofs by cases.
lemma (in group3) OrdGroup_6cases:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \), \( b\in G \)
shows \( 1 \leq a \wedge 1 \leq b \vee a\leq 1 \wedge b\leq 1 \vee \) \( a\leq 1 \wedge 1 \leq b \wedge 1 \leq a\cdot b \vee a\leq 1 \wedge 1 \leq b \wedge a\cdot b \leq 1 \vee \) \( 1 \leq a \wedge b\leq 1 \wedge 1 \leq a\cdot b \vee 1 \leq a \wedge b\leq 1 \wedge a\cdot b \leq 1 \)proofThe next lemma shows what happens when one element of a totally ordered group is not greater or equal than another.
lemma (in group3) OrderedGroup_ZF_1_L8:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \), \( b\in G \) and A3: \( \neg (a\leq b) \)
shows \( b \leq a \), \( a^{-1} \leq b^{-1} \), \( a\neq b \), \( b \lt a \)proofIf one element is greater or equal and not equal to another, then it is not smaller or equal.
lemma (in group3) OrderedGroup_ZF_1_L8AA:
assumes A1: \( a\leq b \) and A2: \( a\neq b \)
shows \( \neg (b\leq a) \)proofA special case of OrderedGroup_ZF_1_L8 when one of the elements is the unit.
corollary (in group3) OrderedGroup_ZF_1_L8A:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \) and A3: \( \neg (1 \leq a) \)
shows \( 1 \leq a^{-1} \), \( 1 \neq a \), \( a\leq 1 \)proofA negative element can not be nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L8B:
assumes A1: \( a\leq 1 \) and A2: \( a\neq 1 \)
shows \( \neg (1 \leq a) \)proofAn element is greater or equal than another iff the difference is nonpositive.
lemma (in group3) OrderedGroup_ZF_1_L9:
assumes A1: \( a\in G \), \( b\in G \)
shows \( a\leq b \longleftrightarrow a\cdot b^{-1} \leq 1 \)proofWe can move an element to the other side of an inequality.
lemma (in group3) OrderedGroup_ZF_1_L9A:
assumes A1: \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b \leq c \longleftrightarrow a \leq c\cdot b^{-1} \)proofA one side version of the previous lemma with weaker assuptions.
lemma (in group3) OrderedGroup_ZF_1_L9B:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( a\cdot b^{-1} \leq c \)
shows \( a \leq c\cdot b \)proofWe can put en element on the other side of inequality, changing its sign.
lemma (in group3) OrderedGroup_ZF_1_L9C:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( c\leq a\cdot b \)
shows \( c\cdot b^{-1} \leq a \), \( a^{-1}\cdot c \leq b \)proofIf an element is greater or equal than another then the difference is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L9D:
assumes A1: \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)proofIf an element is greater than another then the difference is positive.
lemma (in group3) OrderedGroup_ZF_1_L9E:
assumes A1: \( a\leq b \), \( a\neq b \)
shows \( 1 \leq b\cdot a^{-1} \), \( 1 \neq b\cdot a^{-1} \), \( b\cdot a^{-1} \in G_+ \)proofIf the difference is nonnegative, then \(a\leq b\).
lemma (in group3) OrderedGroup_ZF_1_L9F:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( 1 \leq b\cdot a^{-1} \)
shows \( a\leq b \)proofIf we increase the middle term in a product, the whole product increases.
lemma (in group3) OrderedGroup_ZF_1_L10:
assumes \( a\in G \), \( b\in G \) and \( c\leq d \)
shows \( a\cdot c\cdot b \leq a\cdot d\cdot b \) using ordGroupAssum, assms, IsAnOrdGroup_defA product of (strictly) positive elements is not the unit.
lemma (in group3) OrderedGroup_ZF_1_L11:
assumes A1: \( 1 \leq a \), \( 1 \leq b \) and A2: \( 1 \neq a \), \( 1 \neq b \)
shows \( 1 \neq a\cdot b \)proofA product of nonnegative elements is nonnegative.
lemma (in group3) OrderedGroup_ZF_1_L12:
assumes A1: \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)proofIf \(a\) is not greater than \(b\), then \(1\) is not greater than \(b\cdot a^{-1}\).
lemma (in group3) OrderedGroup_ZF_1_L12A:
assumes A1: \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)proofWe can move an element to the other side of a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12B:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( a\cdot b^{-1} \lt c \)
shows \( a \lt c\cdot b \)proofWe can multiply the sides of two inequalities, first of them strict and we get a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12C:
assumes A1: \( a \lt b \) and A2: \( c\leq d \)
shows \( a\cdot c \lt b\cdot d \)proofWe can multiply the sides of two inequalities, second of them strict and we get a strict inequality.
lemma (in group3) OrderedGroup_ZF_1_L12D:
assumes A1: \( a\leq b \) and A2: \( c \lt d \)
shows \( a\cdot c \lt b\cdot d \)proofIn this section we study \( G_+ \) - the set of elements that are (strictly) greater than the unit. The most important result is that every linearly ordered group can decomposed into \(\{1\}\), \( G_+ \) and the set of those elements \(a\in G\) such that \(a^{-1}\in\)\( G_+ \). Another property of linearly ordered groups that we prove here is that if \( G_+ \)\(\neq \emptyset\), then it is infinite. This allows to show that nontrivial linearly ordered groups are infinite.
The positive set is closed under the group operation.
lemma (in group3) OrderedGroup_ZF_1_L13:
shows \( G_+ \text{ is closed under } P \)proofFor totally ordered groups every nonunit element is positive or its inverse is positive.
lemma (in group3) OrderedGroup_ZF_1_L14:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \)
shows \( a=1 \vee a\in G_+ \vee a^{-1}\in G_+ \)proofIf an element belongs to the positive set, then it is not the unit and its inverse does not belong to the positive set.
lemma (in group3) OrderedGroup_ZF_1_L15:
assumes A1: \( a\in G_+ \)
shows \( a\neq 1 \), \( a^{-1}\notin G_+ \)proofIf \(a^{-1}\) is positive, then \(a\) can not be positive or the unit.
lemma (in group3) OrderedGroup_ZF_1_L16:
assumes A1: \( a\in G \) and A2: \( a^{-1}\in G_+ \)
shows \( a\neq 1 \), \( a\notin G_+ \)proofFor linearly ordered groups each element is either the unit, positive or its inverse is positive.
lemma (in group3) OrdGroup_decomp:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \)
shows \( \text{Exactly_1_of_3_holds} (a=1 ,a\in G_+,a^{-1}\in G_+) \)proofA if \(a\) is a nonunit element that is not positive, then \(a^{-1}\) is is positive. This is useful for some proofs by cases.
lemma (in group3) OrdGroup_cases:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \) and A3: \( a\neq 1 \), \( a\notin G_+ \)
shows \( a^{-1} \in G_+ \)proofElements from \(G\setminus G_+\) are not greater that the unit.
lemma (in group3) OrderedGroup_ZF_1_L17:
assumes A1: \( r \text{ is total on } G \) and A2: \( a \in G-G_+ \)
shows \( a\leq 1 \)proofThe next lemma allows to split proofs that something holds for all \(a\in G\) into cases \(a=1\), \(a\in G_+\), \(-a\in G_+\).
lemma (in group3) OrderedGroup_ZF_1_L18:
assumes A1: \( r \text{ is total on } G \) and A2: \( b\in G \) and A3: \( Q(1 ) \) and A4: \( \forall a\in G_+.\ Q(a) \) and A5: \( \forall a\in G_+.\ Q(a^{-1}) \)
shows \( Q(b) \)proofAll elements greater or equal than an element of \( G_+ \) belong to \( G_+ \).
lemma (in group3) OrderedGroup_ZF_1_L19:
assumes A1: \( a \in G_+ \) and A2: \( a\leq b \)
shows \( b \in G_+ \)proofThe inverse of an element of \( G_+ \) cannot be in \( G_+ \).
lemma (in group3) OrderedGroup_ZF_1_L20:
assumes A1: \( r \text{ is total on } G \) and A2: \( a \in G_+ \)
shows \( a^{-1} \notin G_+ \)proofThe set of positive elements of a nontrivial linearly ordered group is not empty.
lemma (in group3) OrderedGroup_ZF_1_L21:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \)
shows \( G_+ \neq 0 \)proofIf \(b\in\)\( G_+ \), then \(a < a\cdot b\). Multiplying \(a\) by a positive elemnt increases \(a\).
lemma (in group3) OrderedGroup_ZF_1_L22:
assumes A1: \( a\in G \), \( b\in G_+ \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \), \( a\cdot b \in G \)proofIf \(G\) is a nontrivial linearly ordered hroup, then for every element of \(G\) we can find one in \( G_+ \) that is greater or equal.
lemma (in group3) OrderedGroup_ZF_1_L23:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( a\in G \)
shows \( \exists b\in G_+.\ a\leq b \)proofThe \( G^+ \) is \( G_+ \) plus the unit.
lemma (in group3) OrderedGroup_ZF_1_L24:
shows \( G^+ = G_+\cup \{1 \} \) using OrderedGroup_ZF_1_L2, OrderedGroup_ZF_1_L2A, OrderedGroup_ZF_1_L3AWhat is \(-G_+\), really?
lemma (in group3) OrderedGroup_ZF_1_L25:
shows \( (-G_+) = \{a^{-1}.\ a\in G_+\} \), \( (-G_+) \subseteq G \)proofIf the inverse of \(a\) is in \( G_+ \), then \(a\) is in the inverse of \( G_+ \).
lemma (in group3) OrderedGroup_ZF_1_L26:
assumes A1: \( a\in G \) and A2: \( a^{-1} \in G_+ \)
shows \( a \in (-G_+) \)proofIf \(a\) is in the inverse of \( G_+ \), then its inverse is in \(G_+\).
lemma (in group3) OrderedGroup_ZF_1_L27:
assumes \( a \in (-G_+) \)
shows \( a^{-1} \in G_+ \) using assms, OrderedGroup_ZF_1_L25, PositiveSet_def, OrderedGroup_ZF_1_L1, group_inv_of_invA linearly ordered group can be decomposed into \(G_+\), \(\{1\}\) and \(-G_+\)
lemma (in group3) OrdGroup_decomp2:
assumes A1: \( r \text{ is total on } G \)
shows \( G = G_+ \cup (-G_+)\cup \{1 \} \), \( G_+\cap (-G_+) = 0 \), \( 1 \notin G_+\cup (-G_+) \)proofIf \(a\cdot b^{-1}\) is nonnegative, then \(b \leq a\). This maybe used to recover the order from the set of nonnegative elements and serve as a way to define order by prescibing that set (see the "Alternative definitions" section).
lemma (in group3) OrderedGroup_ZF_1_L28:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( a\cdot b^{-1} \in G^+ \)
shows \( b\leq a \)proofA special case of OrderedGroup_ZF_1_L28 when \(a\cdot b^{-1}\) is positive.
corollary (in group3) OrderedGroup_ZF_1_L29:
assumes A1: \( a\in G \), \( b\in G \) and A2: \( a\cdot b^{-1} \in G_+ \)
shows \( b\leq a \), \( b\neq a \)proofA bit stronger that OrderedGroup_ZF_1_L29, adds case when two elements are equal.
lemma (in group3) OrderedGroup_ZF_1_L30:
assumes \( a\in G \), \( b\in G \) and \( a=b \vee b\cdot a^{-1} \in G_+ \)
shows \( a\leq b \) using assms, OrderedGroup_ZF_1_L3, OrderedGroup_ZF_1_L29A different take on decomposition: we can have \(a=b\) or \(a
lemma (in group3) OrderedGroup_ZF_1_L31:
assumes A1: \( r \text{ is total on } G \) and A2: \( a\in G \), \( b\in G \)
shows \( a=b \vee (a\leq b \wedge a\neq b) \vee (b\leq a \wedge b\neq a) \)proofIntervals here are the closed intervals of the form \(\{x\in G. a\leq x \leq b \}\).
A bounded set can be translated to put it in \(G^+\) and then it is still bounded above.
lemma (in group3) OrderedGroup_ZF_2_L1:
assumes A1: \( \forall g\in A.\ L\leq g \wedge g\leq M \) and A2: \( S = \text{RightTranslation}(G,P,L^{-1}) \) and A3: \( a \in S(A) \)
shows \( a \leq M\cdot L^{-1} \), \( 1 \leq a \)proofEvery bounded set is an image of a subset of an interval that starts at \(1\).
lemma (in group3) OrderedGroup_ZF_2_L2:
assumes A1: \( \text{IsBounded}(A,r) \)
shows \( \exists B.\ \exists g\in G^+.\ \exists T\in G\rightarrow G.\ A = T(B) \wedge B \subseteq \text{Interval}(r,1 ,g) \)proofIf every interval starting at \(1\) is finite, then every bounded set is finite. I find it interesting that this does not require the group to be linearly ordered (the order to be total).
theorem (in group3) OrderedGroup_ZF_2_T1:
assumes A1: \( \forall g\in G^+.\ \text{Interval}(r,1 ,g) \in Fin(G) \) and A2: \( \text{IsBounded}(A,r) \)
shows \( A \in Fin(G) \)proofIn linearly ordered groups finite sets are bounded.
theorem (in group3) ord_group_fin_bounded:
assumes \( r \text{ is total on } G \) and \( B\in Fin(G) \)
shows \( \text{IsBounded}(B,r) \) using ordGroupAssum, assms, IsAnOrdGroup_def, IsPartOrder_def, Finite_ZF_1_T1For nontrivial linearly ordered groups if for every element \(G\) we can find one in \(A\) that is greater or equal (not necessarily strictly greater), then \(A\) can neither be finite nor bounded above.
lemma (in group3) OrderedGroup_ZF_2_L2A:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \) and A3: \( \forall a\in G.\ \exists b\in A.\ a\leq b \)
shows \( \forall a\in G.\ \exists b\in A.\ a\neq b \wedge a\leq b \), \( \neg \text{IsBoundedAbove}(A,r) \), \( A \notin Fin(G) \)proofNontrivial linearly ordered groups are infinite. Recall that \( Fin(A) \) is the collection of finite subsets of \(A\). In this lemma we show that \(G\notin\) \( Fin(G) \), that is that \(G\) is not a finite subset of itself. This is a way of saying that \(G\) is infinite. We also show that for nontrivial linearly ordered groups \( G_+ \) is infinite.
theorem (in group3) Linord_group_infinite:
assumes A1: \( r \text{ is total on } G \) and A2: \( G \neq \{1 \} \)
shows \( G_+ \notin Fin(G) \), \( G \notin Fin(G) \)proofA property of nonempty subsets of linearly ordered groups that don't have a maximum: for any element in such subset we can find one that is strictly greater.
lemma (in group3) OrderedGroup_ZF_2_L2B:
assumes A1: \( r \text{ is total on } G \) and A2: \( A\subseteq G \) and A3: \( \neg \text{HasAmaximum}(r,A) \) and A4: \( x\in A \)
shows \( \exists y\in A.\ x \lt y \)proofIn linearly ordered groups \(G\setminus G_+\) is bounded above.
lemma (in group3) OrderedGroup_ZF_2_L3:
assumes A1: \( r \text{ is total on } G \)
shows \( \text{IsBoundedAbove}(G-G_+,r) \)proofIn linearly ordered groups if \(A\cap G_+\) is finite, then \(A\) is bounded above.
lemma (in group3) OrderedGroup_ZF_2_L4:
assumes A1: \( r \text{ is total on } G \) and A2: \( A\subseteq G \) and A3: \( A \cap G_+ \in Fin(G) \)
shows \( \text{IsBoundedAbove}(A,r) \)proofIf a set \(-A\subseteq G\) is bounded above, then \(A\) is bounded below.
lemma (in group3) OrderedGroup_ZF_2_L5:
assumes A1: \( A\subseteq G \) and A2: \( \text{IsBoundedAbove}(-A,r) \)
shows \( \text{IsBoundedBelow}(A,r) \)proofIf \(a\leq b\), then the image of the interval \(a..b\) by any function is nonempty.
lemma (in group3) OrderedGroup_ZF_2_L6:
assumes \( a\leq b \) and \( f:G\rightarrow G \)
shows \( f( \text{Interval}(r,a,b)) \neq 0 \) using ordGroupAssum, assms, OrderedGroup_ZF_1_L4, Order_ZF_2_L6, Order_ZF_2_L2A, IsAnOrdGroup_def, IsPartOrder_def, func1_1_L15Aassumes \( g\in G \)
shows \( g\leq g \)assumes \( \text{trans}(r) \) and \( \langle a,b\rangle \in r \wedge \langle b,c\rangle \in r \)
shows \( \langle a,c\rangle \in r \)assumes \( \text{antisym}(r) \) and \( \langle a,b\rangle \in r \), \( \langle b,a\rangle \in r \)
shows \( a=b \)assumes \( a\leq b \), \( b\leq c \)
shows \( a\leq c \)assumes \( a\leq b \), \( b\leq a \)
shows \( a=b \)assumes \( a\leq b \), \( c\in G \)
shows \( a\cdot c \leq b\cdot c \) and \( c\cdot a \leq c\cdot b \)assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \)assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\neq b \)
shows \( a\cdot c \neq b\cdot c \) and \( c\cdot a \neq c\cdot b \)assumes \( \text{IsPartOrder}(X,r) \) and \( r \text{ is total on } X \)
shows \( \text{IsLinOrder}(X,r) \)assumes \( r \text{ is total on } G \) and \( a\in G-G^+ \)
shows \( a\leq 1 \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( a\leq b \)
shows \( b^{-1}\leq a^{-1} \)assumes \( a\in G \)
shows \( a = (a^{-1})^{-1} \)assumes \( 1 \leq a \)
shows \( a^{-1}\leq 1 \) and \( \neg (a\leq 1 \wedge a\neq 1 ) \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( a\leq b \), \( c\in G \)
shows \( a\cdot c \leq b\cdot c \) and \( c\cdot a \leq c\cdot b \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\cdot b \leq a\cdot c \)
shows \( b\leq c \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)assumes \( 1 \leq a \) and \( b\in G \)
shows \( b\leq a\cdot b \), \( b\leq b\cdot a \)assumes \( a\in G \), \( b\in G \) and \( c \leq a\cdot b^{-1} \)
shows \( c\cdot b \leq a \)assumes \( a\in G \), \( b\in G \) and \( c \leq a^{-1}\cdot b \)
shows \( a\cdot c\leq b \)assumes \( a\leq 1 \)
shows \( 1 \leq a^{-1} \)assumes \( r \text{ is total on } G \) and \( a\in G-G^+ \)
shows \( a\leq 1 \), \( a^{-1} \in G^+ \), \( \text{restrict}( \text{GroupInv}(G,P),G-G^+)(a) \in G^+ \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \neg (a\leq b) \)
shows \( b \leq a \), \( a^{-1} \leq b^{-1} \), \( a\neq b \), \( b \lt a \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b \leq c \longleftrightarrow a \leq c\cdot b^{-1} \)assumes \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} = 1 \)
shows \( a=b \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( a\in G \) and \( 1 \leq a^{-1} \)
shows \( a\leq 1 \)assumes \( a \lt b \) and \( c\in G \)
shows \( a\cdot c \lt b\cdot c \) and \( c\cdot a \lt c\cdot b \)assumes \( a\leq b \) and \( b \lt c \)
shows \( a \lt c \)assumes \( a \lt b \) and \( b\leq c \)
shows \( a \lt c \)assumes \( 1 \leq a \), \( 1 \leq b \) and \( 1 \neq a \), \( 1 \neq b \)
shows \( 1 \neq a\cdot b \)assumes \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)assumes \( a\in G \) and \( a \neq 1 \)
shows \( a^{-1} \neq 1 \)assumes \( a\in G_+ \)
shows \( a\neq 1 \), \( a^{-1}\notin G_+ \)assumes \( a\in G \) and \( a^{-1} \neq 1 \)
shows \( a\neq 1 \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( a=1 \vee a\in G_+ \vee a^{-1}\in G_+ \)assumes \( a\in G \) and \( a^{-1}\in G_+ \)
shows \( a\neq 1 \), \( a\notin G_+ \)assumes \( p\vee q\vee r \) and \( p \longrightarrow \neg q \wedge \neg r \) and \( q \longrightarrow \neg p \wedge \neg r \) and \( r \longrightarrow \neg p \wedge \neg q \)
shows \( \text{Exactly_1_of_3_holds} (p,q,r) \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( \neg (1 \leq a) \)
shows \( 1 \leq a^{-1} \), \( 1 \neq a \), \( a\leq 1 \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \text{Exactly_1_of_3_holds} (a=1 ,a\in G_+,a^{-1}\in G_+) \)assumes \( q \) and \( \text{Exactly_1_of_3_holds} (p,q,r) \)
shows \( \neg r \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = a \)
shows \( b=1 \)assumes \( r \text{ is total on } G \) and \( a \in G-G_+ \)
shows \( a\leq 1 \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \)
shows \( G_+ \neq 0 \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( a\in G \) and \( a^{-1} \in G_+ \)
shows \( a \in (-G_+) \)assumes \( a \in (-G_+) \)
shows \( a^{-1} \in G_+ \)assumes \( a\in G \), \( b\in G \) and \( 1 \leq a\cdot b^{-1} \)
shows \( b \leq a \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} \in G_+ \)
shows \( b\leq a \), \( b\neq a \)assumes \( a\in G \), \( b\in G \)
shows \( (a\cdot b^{-1})^{-1} = b\cdot a^{-1} \), \( (a^{-1}\cdot b)^{-1} = b^{-1}\cdot a \)assumes \( f(A)\neq \emptyset \)
shows \( A\neq \emptyset \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) : G\rightarrow G \) and \( \text{LeftTranslation}(G,P,g) : G\rightarrow G \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( c\in Y \)
shows \( \text{ConstantFunction}(X,c) : X\rightarrow Y \)assumes \( g\in G \), \( h\in G \) and \( A\subseteq G \) and \( T_g = \text{RightTranslation}(G,P,g) \), \( T_h = \text{RightTranslation}(G,P,h) \)
shows \( T_g(T_h(A)) = \{a\cdot h\cdot g.\ a\in A\} \)assumes \( \forall g\in A.\ L\leq g \wedge g\leq M \) and \( S = \text{RightTranslation}(G,P,L^{-1}) \) and \( a \in S(A) \)
shows \( a \leq M\cdot L^{-1} \), \( 1 \leq a \)assumes \( \text{IsBounded}(A,r) \)
shows \( \exists B.\ \exists g\in G^+.\ \exists T\in G\rightarrow G.\ A = T(B) \wedge B \subseteq \text{Interval}(r,1 ,g) \)assumes \( f:X\rightarrow Y \) and \( N \in Fin(X) \)
shows \( f(N) \in Fin(Y) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B\in Fin(X) \)
shows \( \text{IsBounded}(B,r) \)assumes \( a\in G \), \( b\in G_+ \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \), \( a\cdot b \in G \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( \text{antisym}(r) \) and \( r \subseteq X\times X \) and \( X\neq 0 \) and \( \forall x\in X.\ \exists a\in A.\ x\neq a \wedge \langle x,a\rangle \in r \)
shows \( \neg \text{IsBoundedAbove}(A,r) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( \text{antisym}(r) \) and \( r \subseteq X\times X \) and \( X\neq 0 \) and \( \forall x\in X.\ \exists a\in A.\ x\neq a \wedge \langle x,a\rangle \in r \)
shows \( A \notin Fin(X) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( a\in G \)
shows \( \exists b\in G_+.\ a\leq b \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( \forall a\in G.\ \exists b\in A.\ a\leq b \)
shows \( \forall a\in G.\ \exists b\in A.\ a\neq b \wedge a\leq b \), \( \neg \text{IsBoundedAbove}(A,r) \), \( A \notin Fin(G) \)assumes \( \text{antisym}(r) \) and \( r \text{ is total on } X \) and \( A\subseteq X \) and \( \neg \text{HasAmaximum}(r,A) \) and \( x\in A \)
shows \( \exists y\in A.\ \langle x,y\rangle \in r \wedge y\neq x \)assumes \( r \text{ is total on } G \)
shows \( \text{IsBoundedAbove}(G-G_+,r) \)assumes \( \text{IsBoundedAbove}(A,r) \) and \( B\subseteq A \)
shows \( \text{IsBoundedAbove}(B,r) \)assumes \( r \text{ is total on } G \) and \( B\in Fin(G) \)
shows \( \text{IsBounded}(B,r) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( \text{IsBoundedAbove}(A,r) \), \( \text{IsBoundedAbove}(B,r) \) and \( r \subseteq X\times X \)
shows \( \text{IsBoundedAbove}(A\cup B,r) \)assumes \( f: X\rightarrow Y \) and \( A\subseteq X \) and \( A\neq \emptyset \)
shows \( f(A) \neq \emptyset \)assumes \( \forall a\in A.\ \langle l,a\rangle \in r \)
shows \( \text{IsBoundedBelow}(A,r) \)assumes \( r \subseteq X\times X \)
shows \( \text{Interval}(r,a,b) \subseteq X \)assumes \( \text{refl}(X,r) \) and \( a\in X \), \( b\in X \) and \( \langle a,b\rangle \in r \)
shows \( \text{Interval}(r,a,b) \neq 0 \)