This theory file is an interface between the old-style Isabelle (ZF logic) material on integers and the IsarMathLib project. Here we redefine the meta-level operations on integers (addition and multiplication) to convert them to ZF-functions and show that integers form a commutative group with respect to addition and commutative monoid with respect to multiplication. Similarly, we redefine the order on integers as a relation, that is a subset of \(Z\times Z\). We show that a subset of intergers is bounded iff it is finite. As we are forced to use standard Isabelle notation with all these dollar signs, sharps etc. to denote "type coercions" (?) the notation is often ugly and difficult to read.
In this section we provide definitions of addition and multiplication as subsets of \((Z\times Z)\times Z\). We use the (higher order) relation defined in the standard Int theory to define a subset of \(Z\times Z\) that constitutes the ZF order relation corresponding to it. We define the set of positive integers using the notion of positive set from the OrderedGroup_ZF theory.
Definition of addition of integers as a binary operation on int. Recall that in standard Isabelle/ZF int is the set of integers and the sum of integers is denoted by prependig \(+\) with a dollar sign.
definition
\( IntegerAddition \equiv \{ \langle x,c\rangle \in (int\times int)\times int.\ \text{fst}(x) \ \$ + \text{snd}(x) = c\} \)
Definition of multiplication of integers as a binary operation on int. In standard Isabelle/ZF product of integers is denoted by prepending the dollar sign to \( * \).
definition
\( IntegerMultiplication \equiv \) \( \{ \langle x,c\rangle \in (int\times int)\times int.\ \text{fst}(x) \ \$ * \text{snd}(x) = c\} \)
Definition of natural order on integers as a relation on int. In the standard Isabelle/ZF the inequality relation on integers is denoted \( \leq \) prepended with the dollar sign.
definition
\( IntegerOrder \equiv \{p \in int\times int.\ \text{fst}(p) \ \$ \leq \text{snd}(p)\} \)
This defines the set of positive integers.
definition
\( PositiveIntegers \equiv \text{PositiveSet}(int,IntegerAddition,IntegerOrder) \)
IntegerAddition and IntegerMultiplication are functions on \( int \times int \).
lemma Int_ZF_1_L1:
shows \( IntegerAddition : int\times int \rightarrow int \), \( IntegerMultiplication : int\times int \rightarrow int \)proofThe next context (locale) defines notation used for integers. We define \( 0 \) to denote the neutral element of addition, \( 1 \) as the unit of the multiplicative monoid. We introduce notation \( m\leq n \) for integers and write m..n to denote the integer interval with endpoints in \(m\) and \(n\). \( abs(m) \) means the absolute value of \(m\). This is a function defined in OrderedGroup that assigns \(x\) to itself if \(x\) is positive and assigns the opposite of \(x\) if \(x\leq 0\). Unforunately we cannot use the \(|\cdot|\) notation as in the OrderedGroup theory as this notation has been hogged by the standard Isabelle's Int theory. The notation \( -A \) where \(A\) is a subset of integers means the set \(\{-m: m\in A\}\). The symbol \( maxf(f,M) \) denotes tha maximum of function \(f\) over the set \(A\). We also introduce a similar notation for the minimum.
locale int0
defines \( \mathbb{Z} \equiv int \)
defines \( a + b \equiv IntegerAddition\langle a,b\rangle \)
defines \( - a \equiv \text{GroupInv}(\mathbb{Z} ,IntegerAddition)(a) \)
defines \( a - b \equiv a + ( - b) \)
defines \( a\cdot b \equiv IntegerMultiplication\langle a,b\rangle \)
defines \( -A \equiv \text{GroupInv}(\mathbb{Z} ,IntegerAddition)(A) \)
defines \( 0 \equiv \text{ TheNeutralElement}(\mathbb{Z} ,IntegerAddition) \)
defines \( 1 \equiv \text{ TheNeutralElement}(\mathbb{Z} ,IntegerMultiplication) \)
defines \( 2 \equiv 1 + 1 \)
defines \( 3 \equiv 2 + 1 \)
defines \( \mathbb{Z} ^+ \equiv \text{Nonnegative}(\mathbb{Z} ,IntegerAddition,IntegerOrder) \)
defines \( \mathbb{Z} _+ \equiv \text{PositiveSet}(\mathbb{Z} ,IntegerAddition,IntegerOrder) \)
defines \( abs(m) \equiv \text{AbsoluteValue}(\mathbb{Z} ,IntegerAddition,IntegerOrder)(m) \)
defines \( m \leq n \equiv \langle m,n\rangle \in IntegerOrder \)
defines \( m.\ .\ n \equiv \text{Interval}(IntegerOrder,m,n) \)
defines \( maxf(f,A) \equiv \text{Maximum}(IntegerOrder,f(A)) \)
defines \( minf(f,A) \equiv \text{Minimum}(IntegerOrder,f(A)) \)
IntegerAddition adds integers and IntegerMultiplication multiplies integers. This states that the ZF functions IntegerAddition and IntegerMultiplication give the same results as the higher-order equivalents defined in the standard Int theory.
lemma (in int0) Int_ZF_1_L2:
assumes A1: \( a \in \mathbb{Z} \), \( b \in \mathbb{Z} \)
shows \( a + b = a \ \$ + b \), \( a\cdot b = a \ \$ * b \)proofInteger addition and multiplication are associative.
lemma (in int0) Int_ZF_1_L3:
assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \), \( z\in \mathbb{Z} \)
shows \( x + y + z = x + (y + z) \), \( x\cdot y\cdot z = x\cdot (y\cdot z) \) using assms, Int_ZF_1_L2, zadd_assoc, zmult_assocInteger addition and multiplication are commutative.
lemma (in int0) Int_ZF_1_L4:
assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \)
shows \( x + y = y + x \), \( x\cdot y = y\cdot x \) using assms, Int_ZF_1_L2, zadd_commute, zmult_commuteZero is neutral for addition and one for multiplication.
lemma (in int0) Int_ZF_1_L5:
assumes A1: \( x\in \mathbb{Z} \)
shows \( (\ \$ # 0) + x = x \wedge x + (\ \$ # 0) = x \), \( (\ \$ # 1)\cdot x = x \wedge x\cdot (\ \$ # 1) = x \)proofZero is neutral for addition and one for multiplication.
lemma (in int0) Int_ZF_1_L6:
shows \( (\ \$ # 0)\in \mathbb{Z} \wedge \) \( (\forall x\in \mathbb{Z} .\ (\ \$ # 0) + x = x \wedge x + (\ \$ # 0) = x) \), \( (\ \$ # 1)\in \mathbb{Z} \wedge \) \( (\forall x\in \mathbb{Z} .\ (\ \$ # 1)\cdot x = x \wedge x\cdot (\ \$ # 1) = x) \) using Int_ZF_1_L5Integers with addition and integers with multiplication form monoids.
theorem (in int0) Int_ZF_1_T1:
shows \( \text{IsAmonoid}(\mathbb{Z} ,IntegerAddition) \), \( \text{IsAmonoid}(\mathbb{Z} ,IntegerMultiplication) \)proofZero is the neutral element of the integers with addition and one is the neutral element of the integers with multiplication.
lemma (in int0) Int_ZF_1_L8:
shows \( (\ \$ # 0) = 0 \), \( (\ \$ # 1) = 1 \)proof\(0\) and \(1\), as defined in int0 context, are integers.
lemma (in int0) Int_ZF_1_L8A:
shows \( 0 \in \mathbb{Z} \), \( 1 \in \mathbb{Z} \)proofZero is not one.
lemma (in int0) int_zero_not_one:
shows \( 0 \neq 1 \)proofThe set of integers is not empty, of course.
lemma (in int0) int_not_empty:
shows \( \mathbb{Z} \neq 0 \) using Int_ZF_1_L8AThe set of integers has more than just zero in it.
lemma (in int0) int_not_trivial:
shows \( \mathbb{Z} \neq \{ 0 \} \) using Int_ZF_1_L8A, int_zero_not_oneEach integer has an inverse (in the addition sense).
lemma (in int0) Int_ZF_1_L9:
assumes A1: \( g \in \mathbb{Z} \)
shows \( \exists b\in \mathbb{Z} .\ g + b = 0 \)proofIntegers with addition form an abelian group. This also shows that we can apply all theorems proven in the proof contexts (locales) that require the assumpion that some pair of sets form a group like locale group0.
theorem Int_ZF_1_T2:
shows \( \text{IsAgroup}(int,IntegerAddition) \), \( IntegerAddition \text{ is commutative on } int \), \( group0(int,IntegerAddition) \) using Int_ZF_1_T1, Int_ZF_1_L9, IsAgroup_def, group0_def, Int_ZF_1_L4, IsCommutative_defWhat is the additive group inverse in the group of integers?
lemma (in int0) Int_ZF_1_L9A:
assumes A1: \( m\in \mathbb{Z} \)
shows \( \ \$ -m = - m \)proofSubtracting integers corresponds to adding the negative.
lemma (in int0) Int_ZF_1_L10:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m - n = m \ \$ + \ \$ -n \) using assms, Int_ZF_1_T2, inverse_in_group, Int_ZF_1_L9A, Int_ZF_1_L2Negative of zero is zero.
lemma (in int0) Int_ZF_1_L11:
shows \( ( - 0 ) = 0 \) using Int_ZF_1_T2, group_inv_of_oneA trivial calculation lemma that allows to subtract and add one.
lemma Int_ZF_1_L12:
assumes \( m\in int \)
shows \( m \ \$ - \ \$ #1 \ \$ + \ \$ #1 = m \) using assms, eq_zdiff_iffA trivial calculation lemma that allows to subtract and add one, version with ZF-operation.
lemma (in int0) Int_ZF_1_L13:
assumes \( m\in \mathbb{Z} \)
shows \( (m \ \$ - \ \$ #1) + 1 = m \) using assms, Int_ZF_1_L8A, Int_ZF_1_L2, Int_ZF_1_L8, Int_ZF_1_L12Adding or subtracing one changes integers.
lemma (in int0) Int_ZF_1_L14:
assumes A1: \( m\in \mathbb{Z} \)
shows \( m + 1 \neq m \), \( m - 1 \neq m \)proofIf the difference is zero, the integers are equal.
lemma (in int0) Int_ZF_1_L15:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( m - n = 0 \)
shows \( m=n \)proofIn this section we define order on integers as a relation, that is a subset of \(Z\times Z\) and show that integers form an ordered group.
The next lemma interprets the order definition one way.
lemma (in int0) Int_ZF_2_L1:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( m \ \$ \leq n \)
shows \( m \leq n \)proofThe next lemma interprets the definition the other way.
lemma (in int0) Int_ZF_2_L1A:
assumes A1: \( m \leq n \)
shows \( m \ \$ \leq n \), \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)proofInteger order is a relation on integers.
lemma Int_ZF_2_L1B:
shows \( IntegerOrder \subseteq int\times int \)proofThe way we define the notion of being bounded below, its sufficient for the relation to be on integers for all bounded below sets to be subsets of integers.
lemma (in int0) Int_ZF_2_L1C:
assumes A1: \( \text{IsBoundedBelow}(A,IntegerOrder) \)
shows \( A\subseteq \mathbb{Z} \)proofThe order on integers is reflexive.
lemma (in int0) int_ord_is_refl:
shows \( \text{refl}(\mathbb{Z} ,IntegerOrder) \) using Int_ZF_2_L1, zle_refl, refl_defThe essential condition to show antisymmetry of the order on integers.
lemma (in int0) Int_ZF_2_L3:
assumes A1: \( m \leq n \), \( n \leq m \)
shows \( m=n \)proofThe order on integers is antisymmetric.
lemma (in int0) Int_ZF_2_L4:
shows \( \text{antisym}(IntegerOrder) \)proofThe essential condition to show that the order on integers is transitive.
lemma Int_ZF_2_L5:
assumes A1: \( \langle m,n\rangle \in IntegerOrder \), \( \langle n,k\rangle \in IntegerOrder \)
shows \( \langle m,k\rangle \in IntegerOrder \)proofThe order on integers is transitive. This version is stated in the int0 context using notation for integers.
lemma (in int0) Int_order_transitive:
assumes A1: \( m\leq n \), \( n\leq k \)
shows \( m\leq k \)proofThe order on integers is transitive.
lemma Int_ZF_2_L6:
shows \( \text{trans}(IntegerOrder) \)proofThe order on integers is a partial order.
lemma Int_ZF_2_L7:
shows \( \text{IsPartOrder}(int,IntegerOrder) \) using int_ord_is_refl, Int_ZF_2_L4, Int_ZF_2_L6, IsPartOrder_defThe essential condition to show that the order on integers is preserved by translations.
lemma (in int0) int_ord_transl_inv:
assumes A1: \( k \in \mathbb{Z} \) and A2: \( m \leq n \)
shows \( m + k \leq n + k \), \( k + m\leq k + n \)proofIntegers form a linearly ordered group. We can apply all theorems proven in group3 context to integers.
theorem (in int0) Int_ZF_2_T1:
shows \( \text{IsAnOrdGroup}(\mathbb{Z} ,IntegerAddition,IntegerOrder) \), \( IntegerOrder \text{ is total on } \mathbb{Z} \), \( group3(\mathbb{Z} ,IntegerAddition,IntegerOrder) \), \( \text{IsLinOrder}(\mathbb{Z} ,IntegerOrder) \)proofIf a pair \((i,m)\) belongs to the order relation on integers and
\(i\neq m\), then \(i
lemma (in int0) Int_ZF_2_L9:
assumes A1: \( i \leq m \) and A2: \( i\neq m \)
shows \( i \ \$ \lt m \)proofThis shows how Isabelle's \( \ \$ \lt \) operator translates to IsarMathLib notation.
lemma (in int0) Int_ZF_2_L9AA:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( m \ \$ \lt n \)
shows \( m\leq n \), \( m \neq n \) using assms, zle_def, Int_ZF_2_L1A small technical lemma about putting one on the other side of an inequality.
lemma (in int0) Int_ZF_2_L9A:
assumes A1: \( k\in \mathbb{Z} \) and A2: \( m \leq k \ \$ - (\ \$ # 1) \)
shows \( m + 1 \leq k \)proofWe can put any integer on the other side of an inequality reversing its sign.
lemma (in int0) Int_ZF_2_L9B:
assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( i + m \leq k \longleftrightarrow i \leq k - m \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L9AA special case of Int_ZF_2_L9B with weaker assumptions.
lemma (in int0) Int_ZF_2_L9C:
assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \) and \( i - m \leq k \)
shows \( i \leq k + m \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L9BTaking (higher order) minus on both sides of inequality reverses it.
lemma (in int0) Int_ZF_2_L10:
assumes \( k \leq i \)
shows \( ( - i) \leq ( - k) \), \( \ \$ -i \leq \ \$ -k \) using assms, Int_ZF_2_L1A, Int_ZF_1_L9A, Int_ZF_2_T1, OrderedGroup_ZF_1_L5Taking minus on both sides of inequality reverses it, version with a negative on one side.
lemma (in int0) Int_ZF_2_L10AA:
assumes \( n\in \mathbb{Z} \), \( m\leq ( - n) \)
shows \( n\leq ( - m) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5ADWe can cancel the same element on on both sides of an inequality, a version with minus on both sides.
lemma (in int0) Int_ZF_2_L10AB:
assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \), \( k\in \mathbb{Z} \) and \( m - n \leq m - k \)
shows \( k\leq n \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5AFIf an integer is nonpositive, then its opposite is nonnegative.
lemma (in int0) Int_ZF_2_L10A:
assumes \( k \leq 0 \)
shows \( 0 \leq ( - k) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5AIf the opposite of an integers is nonnegative, then the integer is nonpositive.
lemma (in int0) Int_ZF_2_L10B:
assumes \( k\in \mathbb{Z} \) and \( 0 \leq ( - k) \)
shows \( k\leq 0 \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5AAAdding one to an integer corresponds to taking a successor for a natural number.
lemma (in int0) Int_ZF_2_L11:
shows \( i \ \$ + \ \$ # n \ \$ + (\ \$ # 1) = i \ \$ + \ \$ # succ(n) \)proofAdding a natural number increases integers.
lemma (in int0) Int_ZF_2_L12:
assumes A1: \( i\in \mathbb{Z} \) and A2: \( n\in nat \)
shows \( i \leq i \ \$ + \ \$ #n \)proofAdding one increases integers.
lemma (in int0) Int_ZF_2_L12A:
assumes A1: \( j\leq k \)
shows \( j \leq k \ \$ + \ \$ #1 \), \( j \leq k + 1 \)proofAdding one increases integers, yet one more version.
lemma (in int0) Int_ZF_2_L12B:
assumes A1: \( m\in \mathbb{Z} \)
shows \( m \leq m + 1 \) using assms, int_ord_is_refl, refl_def, Int_ZF_2_L12AIf \(k+1 = m+n\), where \(n\) is a non-zero natural number, then \(m\leq k\).
lemma (in int0) Int_ZF_2_L13:
assumes A1: \( k\in \mathbb{Z} \), \( m\in \mathbb{Z} \) and A2: \( n\in nat \) and A3: \( k \ \$ + (\ \$ # 1) = m \ \$ + \ \$ # succ(n) \)
shows \( m \leq k \)proofThe absolute value of an integer is an integer.
lemma (in int0) Int_ZF_2_L14:
assumes A1: \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} \)proofIf two integers are nonnegative, then the opposite of one is less or equal than the other and the sum is also nonnegative.
lemma (in int0) Int_ZF_2_L14A:
assumes \( 0 \leq m \), \( 0 \leq n \)
shows \( ( - m) \leq n \), \( 0 \leq m + n \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5AC, OrderedGroup_ZF_1_L12We can increase components in an estimate.
lemma (in int0) Int_ZF_2_L15:
assumes \( b\leq b_1 \), \( c\leq c_1 \) and \( a\leq b + c \)
shows \( a\leq b_1 + c_1 \)proofWe can add or subtract the sides of two inequalities.
lemma (in int0) int_ineq_add_sides:
assumes \( a\leq b \) and \( c\leq d \)
shows \( a + c \leq b + d \), \( a - d \leq b - c \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5B, OrderedGroup_ZF_1_L5IWe can increase the second component in an estimate.
lemma (in int0) Int_ZF_2_L15A:
assumes \( b\in \mathbb{Z} \) and \( a\leq b + c \) and A3: \( c\leq c_1 \)
shows \( a\leq b + c_1 \)proofIf we increase the second component in a sum of three integers, the whole sum inceases.
lemma (in int0) Int_ZF_2_L15C:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( k \leq L \)
shows \( m + k + n \leq m + L + n \)proofWe don't decrease an integer by adding a nonnegative one.
lemma (in int0) Int_ZF_2_L15D:
assumes \( 0 \leq n \), \( m\in \mathbb{Z} \)
shows \( m \leq n + m \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5FSome inequalities about the sum of two integers and its absolute value.
lemma (in int0) Int_ZF_2_L15E:
assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m + n \leq abs(m) + abs(n) \), \( m - n \leq abs(m) + abs(n) \), \( ( - m) + n \leq abs(m) + abs(n) \), \( ( - m) - n \leq abs(m) + abs(n) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L6AWe can add a nonnegative integer to the right hand side of an inequality.
lemma (in int0) Int_ZF_2_L15F:
assumes \( m\leq k \) and \( 0 \leq n \)
shows \( m \leq k + n \), \( m \leq n + k \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L5GTriangle inequality for integers.
lemma (in int0) Int_triangle_ineq:
assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m + n)\leq abs(m) + abs(n) \) using assms, Int_ZF_1_T2, Int_ZF_2_T1, OrdGroup_triangle_ineqTaking absolute value does not change nonnegative integers.
lemma (in int0) Int_ZF_2_L16:
assumes \( 0 \leq m \)
shows \( m\in \mathbb{Z} ^+ \) and \( abs(m) = m \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L2, OrderedGroup_ZF_3_L2\(0\leq 1\), so \(|1| = 1\).
lemma (in int0) Int_ZF_2_L16A:
shows \( 0 \leq 1 \) and \( abs(1 ) = 1 \)proof\(1\leq 2\).
lemma (in int0) Int_ZF_2_L16B:
shows \( 1 \leq 2 \)proofIntegers greater or equal one are greater or equal zero.
lemma (in int0) Int_ZF_2_L16C:
assumes A1: \( 1 \leq a \)
shows \( 0 \leq a \), \( a\neq 0 \), \( 2 \leq a + 1 \), \( 1 \leq a + 1 \), \( 0 \leq a + 1 \)proofAbsolute value is the same for an integer and its opposite.
lemma (in int0) Int_ZF_2_L17:
assumes \( m\in \mathbb{Z} \)
shows \( abs( - m) = abs(m) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L7AThe absolute value of zero is zero.
lemma (in int0) Int_ZF_2_L18:
shows \( abs( 0 ) = 0 \) using Int_ZF_2_T1, OrderedGroup_ZF_3_L2AA different version of the triangle inequality.
lemma (in int0) Int_triangle_ineq1:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m - n) \leq abs(n) + abs(m) \), \( abs(m - n) \leq abs(m) + abs(n) \)proofAnother version of the triangle inequality.
lemma (in int0) Int_triangle_ineq2:
assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( abs(m - n) \leq k \)
shows \( abs(m) \leq abs(n) + k \), \( m - k \leq n \), \( m \leq n + k \), \( n - k \leq m \) using assms, Int_ZF_1_T2, Int_ZF_2_T1, OrderedGroup_ZF_3_L7D, OrderedGroup_ZF_3_L7ETriangle inequality with three integers. We could use OrdGroup_triangle_ineq3, but since simp cannot translate the notation directly, it is simpler to reprove it for integers.
lemma (in int0) Int_triangle_ineq3:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( abs(m + n + k) \leq abs(m) + abs(n) + abs(k) \)proofThe next lemma shows what happens when one integers is not greater or equal than another.
lemma (in int0) Int_ZF_2_L19:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( \neg (n\leq m) \)
shows \( m\leq n \), \( ( - n) \leq ( - m) \), \( m\neq n \)proofIf one integer is greater or equal and not equal to another, then it is not smaller or equal.
lemma (in int0) Int_ZF_2_L19AA:
assumes A1: \( m\leq n \) and A2: \( m\neq n \)
shows \( \neg (n\leq m) \)proofThe next lemma allows to prove theorems for the case of positive and negative integers separately.
lemma (in int0) Int_ZF_2_L19A:
assumes A1: \( m\in \mathbb{Z} \) and A2: \( \neg ( 0 \leq m) \)
shows \( m\leq 0 \), \( 0 \leq ( - m) \), \( m\neq 0 \)proofWe can prove a theorem about integers by proving that it holds for \(m=0\), \(m\in\)\( \mathbb{Z} _+ \) and \(-m\in\)\( \mathbb{Z} _+ \).
lemma (in int0) Int_ZF_2_L19B:
assumes \( m\in \mathbb{Z} \) and \( Q( 0 ) \) and \( \forall n\in \mathbb{Z} _+.\ Q(n) \) and \( \forall n\in \mathbb{Z} _+.\ Q( - n) \)
shows \( Q(m) \)proofAn integer is not greater than its absolute value.
lemma (in int0) Int_ZF_2_L19C:
assumes A1: \( m\in \mathbb{Z} \)
shows \( m \leq abs(m) \), \( ( - m) \leq abs(m) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L5, OrderedGroup_ZF_3_L6\(|m-n| = |n-m|\).
lemma (in int0) Int_ZF_2_L20:
assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m - n) = abs(n - m) \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L7BWe can add the sides of inequalities with absolute values.
lemma (in int0) Int_ZF_2_L21:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( abs(m) \leq k \), \( abs(n) \leq l \)
shows \( abs(m + n) \leq k + l \), \( abs(m - n) \leq k + l \) using assms, Int_ZF_1_T2, Int_ZF_2_T1, OrderedGroup_ZF_3_L7C, OrderedGroup_ZF_3_L7CAAbsolute value is nonnegative.
lemma (in int0) int_abs_nonneg:
assumes A1: \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} ^+ \), \( 0 \leq abs(m) \)proofIf an nonnegative integer is less or equal than another, then so is its absolute value.
lemma (in int0) Int_ZF_2_L23:
assumes \( 0 \leq m \), \( m\leq k \)
shows \( abs(m) \leq k \) using assms, Int_ZF_2_L16In this section we show some induction lemmas for integers. The basic tools are the induction on natural numbers and the fact that integers can be written as a sum of a smaller integer and a natural number.
An integer can be written a a sum of a smaller integer and a natural number.
lemma (in int0) Int_ZF_3_L2:
assumes A1: \( i \leq m \)
shows \( \exists n\in nat.\ m = i \ \$ + \ \$ # n \)proofInduction for integers, the induction step.
lemma (in int0) Int_ZF_3_L6:
assumes A1: \( i\in \mathbb{Z} \) and A2: \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)
shows \( \forall k\in nat.\ Q(i \ \$ + (\ \$ # k)) \longrightarrow Q(i \ \$ + (\ \$ # succ(k))) \)proofInduction on integers, version with higher-order increment function.
lemma (in int0) Int_ZF_3_L7:
assumes A1: \( i\leq k \) and A2: \( Q(i) \) and A3: \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)
shows \( Q(k) \)proofInduction on integer, implication between two forms of the induction step.
lemma (in int0) Int_ZF_3_L7A:
assumes A1: \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)proofInduction on integers, version with ZF increment function.
theorem (in int0) Induction_on_int:
assumes A1: \( i\leq k \) and A2: \( Q(i) \) and A3: \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( Q(k) \)proofAnother form of induction on integers. This rewrites the basic theorem Int_ZF_3_L7 substituting \(P(-k)\) for \(Q(k)\).
lemma (in int0) Int_ZF_3_L7B:
assumes A1: \( i\leq k \) and A2: \( P(\ \$ -i) \) and A3: \( \forall m.\ i\leq m \wedge P(\ \$ -m) \longrightarrow P(\ \$ -(m \ \$ + (\ \$ # 1))) \)
shows \( P(\ \$ -k) \)proofAnother induction on integers. This rewrites Int\_ZF\_3\_L7 substituting \(-k\) for \(k\) and \(-i\) for \(i\).
lemma (in int0) Int_ZF_3_L8:
assumes A1: \( k\leq i \) and A2: \( P(i) \) and A3: \( \forall m.\ \ \$ -i\leq m \wedge P(\ \$ -m) \longrightarrow P(\ \$ -(m \ \$ + (\ \$ # 1))) \)
shows \( P(k) \)proofAn implication between two forms of induction steps.
lemma (in int0) Int_ZF_3_L9:
assumes A1: \( i\in \mathbb{Z} \) and A2: \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)
shows \( \forall m.\ \ \$ -i\leq m \wedge P(\ \$ -m) \longrightarrow P(\ \$ -(m \ \$ + (\ \$ # 1))) \)proofBackwards induction on integers, version with higher-order decrement function.
lemma (in int0) Int_ZF_3_L9A:
assumes A1: \( k\leq i \) and A2: \( P(i) \) and A3: \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)
shows \( P(k) \)proofInduction on integers, implication between two forms of the induction step.
lemma (in int0) Int_ZF_3_L10:
assumes A1: \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n - 1 ) \)
shows \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)proofBackwards induction on integers.
theorem (in int0) Back_induct_on_int:
assumes A1: \( k\leq i \) and A2: \( P(i) \) and A3: \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n - 1 ) \)
shows \( P(k) \)proofThe goal of this section is to establish that a subset of integers is bounded is and only is it is finite. The fact that all finite sets are bounded is already shown for all linearly ordered groups in OrderedGroups_ZF.thy. To show the other implication we show that all intervals starting at 0 are finite and then use a result from OrderedGroups_ZF.thy.
There are no integers between \(k\) and \(k+1\).
lemma (in int0) Int_ZF_4_L1:
assumes A1: \( k\in \mathbb{Z} \), \( m\in \mathbb{Z} \), \( n\in nat \) and A2: \( k \ \$ + \ \$ #1 = m \ \$ + \ \$ #n \)
shows \( m = k \ \$ + \ \$ #1 \vee m \leq k \)proofA trivial calculation lemma that allows to subtract and add one.
lemma Int_ZF_4_L1A:
assumes \( m\in int \)
shows \( m \ \$ - \ \$ #1 \ \$ + \ \$ #1 = m \) using assms, eq_zdiff_iffThere are no integers between \(k\) and \(k+1\), another formulation.
lemma (in int0) Int_ZF_4_L1B:
assumes A1: \( m \leq L \)
shows \( m = L \vee m + 1 \leq L \), \( m = L \vee m \leq L - 1 \)proofIf \(j\in m..k+1\), then \(j\in m..n\) or \(j=k+1\).
lemma (in int0) Int_ZF_4_L2:
assumes A1: \( k\in \mathbb{Z} \) and A2: \( j \in m.\ .\ (k \ \$ + \ \$ #1) \)
shows \( j \in m.\ .\ k \vee j \in \{k \ \$ + \ \$ #1\} \)proofExtending an integer interval by one is the same as adding the new endpoint.
lemma (in int0) Int_ZF_4_L3:
assumes A1: \( m\leq k \)
shows \( m.\ .\ (k \ \$ + \ \$ #1) = m.\ .\ k \cup \{k \ \$ + \ \$ #1\} \)proofInteger intervals are finite - induction step.
lemma (in int0) Int_ZF_4_L4:
assumes A1: \( i\leq m \) and A2: \( i.\ .\ m \in Fin(\mathbb{Z} ) \)
shows \( i.\ .\ (m \ \$ + \ \$ #1) \in Fin(\mathbb{Z} ) \) using assms, Int_ZF_4_L3Integer intervals are finite.
lemma (in int0) Int_ZF_4_L5:
assumes A1: \( i\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( i.\ .\ k \in Fin(\mathbb{Z} ) \)proofBounded integer sets are finite.
lemma (in int0) Int_ZF_4_L6:
assumes A1: \( \text{IsBounded}(A,IntegerOrder) \)
shows \( A \in Fin(\mathbb{Z} ) \)proofA subset of integers is bounded iff it is finite.
theorem (in int0) Int_bounded_iff_fin:
shows \( \text{IsBounded}(A,IntegerOrder)\longleftrightarrow A\in Fin(\mathbb{Z} ) \) using Int_ZF_4_L6, Int_ZF_2_T1, ord_group_fin_boundedThe image of an interval by any integer function is finite, hence bounded.
lemma (in int0) Int_ZF_4_L8:
assumes A1: \( i\in \mathbb{Z} \), \( k\in \mathbb{Z} \) and A2: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( f(i.\ .\ k) \in Fin(\mathbb{Z} ) \), \( \text{IsBounded}(f(i.\ .\ k),IntegerOrder) \) using assms, Int_ZF_4_L5, Finite1_L6A, Int_bounded_iff_finIf for every integer we can find one in \(A\) that is greater or equal, then \(A\) is is not bounded above, hence infinite.
lemma (in int0) Int_ZF_4_L9:
assumes A1: \( \forall m\in \mathbb{Z} .\ \exists k\in A.\ m\leq k \)
shows \( \neg \text{IsBoundedAbove}(A,IntegerOrder) \), \( A \notin Fin(\mathbb{Z} ) \)proofassumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,y\rangle \in X\times Y.\ b(x) = y\} : X\rightarrow Y \)assumes \( a \in \mathbb{Z} \), \( b \in \mathbb{Z} \)
shows \( a + b = a \ \$ + b \), \( a\cdot b = a \ \$ * b \)assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \)
shows \( x + y = y + x \), \( x\cdot y = y\cdot x \)assumes \( x\in \mathbb{Z} \)
shows \( (\ \$ # 0) + x = x \wedge x + (\ \$ # 0) = x \), \( (\ \$ # 1)\cdot x = x \wedge x\cdot (\ \$ # 1) = x \)assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \), \( z\in \mathbb{Z} \)
shows \( x + y + z = x + (y + z) \), \( x\cdot y\cdot z = x\cdot (y\cdot z) \)assumes \( e \in G \wedge (\forall g\in G.\ e \oplus g = g \wedge g \oplus e = g) \)
shows \( e = \text{ TheNeutralElement}(G,f) \)assumes \( g \in \mathbb{Z} \)
shows \( \exists b\in \mathbb{Z} .\ g + b = 0 \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( m\in \mathbb{Z} \)
shows \( \ \$ -m = - m \)assumes \( m\in int \)
shows \( m \ \$ - \ \$ #1 \ \$ + \ \$ #1 = m \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = a \)
shows \( b=1 \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} = 1 \)
shows \( a=b \)assumes \( r \subseteq X\times X \) and \( \text{IsBoundedBelow}(A,r) \)
shows \( A\subseteq X \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( m \ \$ \leq n \)
shows \( m \leq n \)assumes \( m \leq n \)
shows \( m \ \$ \leq n \), \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)assumes \( m \leq n \), \( n \leq m \)
shows \( m=n \)assumes \( \langle m,n\rangle \in IntegerOrder \), \( \langle n,k\rangle \in IntegerOrder \)
shows \( \langle m,k\rangle \in IntegerOrder \)assumes \( \forall x y z.\ \langle x, y\rangle \in r \wedge \langle y, z\rangle \in r \longrightarrow \langle x, z\rangle \in r \)
shows \( \text{trans}(r) \)assumes \( k \in \mathbb{Z} \) and \( m \leq n \)
shows \( m + k \leq n + k \), \( k + m\leq k + n \)assumes \( m\in \mathbb{Z} \)
shows \( (m \ \$ - \ \$ #1) + 1 = m \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b \leq c \longleftrightarrow a \leq c\cdot b^{-1} \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} \leq c \)
shows \( a \leq c\cdot b \)assumes \( a\leq b \)
shows \( b^{-1}\leq a^{-1} \)assumes \( b \in G \) and \( a\leq b^{-1} \)
shows \( b \leq a^{-1} \)assumes \( a\in G \), \( b\in G \), \( c\in G \) and \( a\cdot b^{-1} \leq a\cdot c^{-1} \)
shows \( c\leq b \)assumes \( a\leq 1 \)
shows \( 1 \leq a^{-1} \)assumes \( a\in G \) and \( 1 \leq a^{-1} \)
shows \( a\leq 1 \)assumes \( n \in nat \) and \( n\neq 0 \)
shows \( \exists k\in nat.\ n = succ(k) \)assumes \( i\in \mathbb{Z} \) and \( n\in nat \)
shows \( i \leq i \ \$ + \ \$ #n \)assumes \( j\leq k \)
shows \( j \leq k \ \$ + \ \$ #1 \), \( j \leq k + 1 \)assumes \( 1 \leq a \), \( 1 \leq b \)
shows \( a^{-1} \leq b \)assumes \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)assumes \( a \leq b\cdot c \) and \( b\leq b_1 \), \( c\leq c_1 \)
shows \( a \leq b_1\cdot c_1 \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot c \leq b\cdot d \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a\cdot d^{-1} \leq b\cdot c^{-1} \)assumes \( b\in G \) and \( a \leq b\cdot c \) and \( c\leq b_1 \)
shows \( a \leq b\cdot b_1 \)assumes \( a\in G \), \( b\in G \) and \( c\leq d \)
shows \( a\cdot c\cdot b \leq a\cdot d\cdot b \)assumes \( 1 \leq a \) and \( b\in G \)
shows \( b\leq a\cdot b \), \( b\leq b\cdot a \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b \leq \vert a\vert \cdot \vert b\vert \), \( a\cdot b^{-1} \leq \vert a\vert \cdot \vert b\vert \), \( a^{-1}\cdot b \leq \vert a\vert \cdot \vert b\vert \), \( a^{-1}\cdot b^{-1} \leq \vert a\vert \cdot \vert b\vert \)assumes \( a\leq b \) and \( 1 \leq c \)
shows \( a\leq b\cdot c \), \( a\leq c\cdot b \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b\vert \leq \vert a\vert \cdot \vert b\vert \)assumes \( a\in G^+ \)
shows \( \vert a\vert = a \)assumes \( 0 \leq m \)
shows \( m\in \mathbb{Z} ^+ \) and \( abs(m) = m \)assumes \( m\leq n \), \( n\leq k \)
shows \( m\leq k \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \vert a^{-1}\vert = \vert a\vert \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m + n)\leq abs(m) + abs(n) \)assumes \( m\in \mathbb{Z} \)
shows \( abs( - m) = abs(m) \)assumes \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \vert a\cdot b^{-1}\vert \leq c \)
shows \( \vert a\vert \leq c\cdot \vert b\vert \), \( \vert a\vert \leq \vert b\vert \cdot c \), \( c^{-1}\cdot a \leq b \), \( a\cdot c^{-1} \leq b \), \( a \leq b\cdot c \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \vert a\cdot b^{-1}\vert \leq c \)
shows \( b\cdot c^{-1} \leq a \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( k \leq i \)
shows \( ( - i) \leq ( - k) \), \( \ \$ -i \leq \ \$ -k \)assumes \( a\leq b \) and \( a\neq b \)
shows \( \neg (b\leq a) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( \neg (n\leq m) \)
shows \( m\leq n \), \( ( - n) \leq ( - m) \), \( m\neq n \)assumes \( r \text{ is total on } G \) and \( b\in G \) and \( Q(1 ) \) and \( \forall a\in G_+.\ Q(a) \) and \( \forall a\in G_+.\ Q(a^{-1}) \)
shows \( Q(b) \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( a \leq \vert a\vert \)assumes \( a\in G \)
shows \( a^{-1} \leq \vert a\vert \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( \vert a\cdot b^{-1}\vert = \vert b\cdot a^{-1}\vert \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \), \( a\in G \), \( b\in G \) and \( \vert a\vert \leq c \), \( \vert b\vert \leq d \)
shows \( \vert a\cdot b\vert \leq c\cdot d \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \) and \( \vert a\vert \leq c \), \( \vert b\vert \leq d \)
shows \( \vert a\cdot b^{-1}\vert \leq c\cdot d \)assumes \( r \text{ is total on } G \)
shows \( \text{AbsoluteValue}(G,P,r) : G\rightarrow G^+ \)assumes \( i \leq m \) and \( i\neq m \)
shows \( i \ \$ \lt m \)assumes \( i \leq m \)
shows \( \exists n\in nat.\ m = i \ \$ + \ \$ # n \)assumes \( i\in \mathbb{Z} \) and \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)
shows \( \forall k\in nat.\ Q(i \ \$ + (\ \$ # k)) \longrightarrow Q(i \ \$ + (\ \$ # succ(k))) \)assumes \( n\in nat \) and \( P(0) \) and \( \forall k\in nat.\ P(k)\longrightarrow P(succ(k)) \)
shows \( P(n) \)assumes \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)assumes \( i\leq k \) and \( Q(i) \) and \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m \ \$ + (\ \$ # 1)) \)
shows \( Q(k) \)assumes \( i\in \mathbb{Z} \) and \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)
shows \( \forall m.\ \ \$ -i\leq m \wedge P(\ \$ -m) \longrightarrow P(\ \$ -(m \ \$ + (\ \$ # 1))) \)assumes \( k\leq i \) and \( P(i) \) and \( \forall m.\ \ \$ -i\leq m \wedge P(\ \$ -m) \longrightarrow P(\ \$ -(m \ \$ + (\ \$ # 1))) \)
shows \( P(k) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m - n = m \ \$ + \ \$ -n \)assumes \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n - 1 ) \)
shows \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)assumes \( k\leq i \) and \( P(i) \) and \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n \ \$ + \ \$ -(\ \$ #1)) \)
shows \( P(k) \)assumes \( k\in \mathbb{Z} \), \( m\in \mathbb{Z} \) and \( n\in nat \) and \( k \ \$ + (\ \$ # 1) = m \ \$ + \ \$ # succ(n) \)
shows \( m \leq k \)assumes \( m\in int \)
shows \( m \ \$ - \ \$ #1 \ \$ + \ \$ #1 = m \)assumes \( k\in \mathbb{Z} \), \( m\in \mathbb{Z} \), \( n\in nat \) and \( k \ \$ + \ \$ #1 = m \ \$ + \ \$ #n \)
shows \( m = k \ \$ + \ \$ #1 \vee m \leq k \)assumes \( k\in \mathbb{Z} \) and \( m \leq k \ \$ - (\ \$ # 1) \)
shows \( m + 1 \leq k \)assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( i + m \leq k \longleftrightarrow i \leq k - m \)assumes \( x \in \text{Interval}(r,a,b) \)
shows \( \langle a,x\rangle \in r \), \( \langle x,b\rangle \in r \)assumes \( \langle a,x\rangle \in r \), \( \langle x,b\rangle \in r \)
shows \( x \in \text{Interval}(r,a,b) \)assumes \( k\in \mathbb{Z} \) and \( j \in m.\ .\ (k \ \$ + \ \$ #1) \)
shows \( j \in m.\ .\ k \vee j \in \{k \ \$ + \ \$ #1\} \)assumes \( g\in G \)
shows \( g\leq g \)assumes \( \text{trans}(r) \) and \( \langle a,b\rangle \in r \), \( \langle b,c\rangle \in r \), \( \langle c,d\rangle \in r \)
shows \( \text{Interval}(r,b,c) \subseteq \text{Interval}(r,a,d) \)assumes \( \text{refl}(X,r) \) and \( a\in X \), \( b\in X \) and \( \langle a,b\rangle \in r \)
shows \( a \in \text{Interval}(r,a,b) \), \( b \in \text{Interval}(r,a,b) \)assumes \( m\leq k \)
shows \( m.\ .\ (k \ \$ + \ \$ #1) = m.\ .\ k \cup \{k \ \$ + \ \$ #1\} \)assumes \( \text{refl}(X,r) \) and \( \text{antisym}(r) \) and \( a\in X \)
shows \( \text{Interval}(r,a,a) = \{a\} \)assumes \( i\leq m \) and \( i.\ .\ m \in Fin(\mathbb{Z} ) \)
shows \( i.\ .\ (m \ \$ + \ \$ #1) \in Fin(\mathbb{Z} ) \)assumes \( \text{trans}(r) \) and \( \langle a,b\rangle \notin r \)
shows \( \text{Interval}(r,a,b) = 0 \)assumes \( i\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( i.\ .\ k \in Fin(\mathbb{Z} ) \)assumes \( \forall g\in G^+.\ \text{Interval}(r,1 ,g) \in Fin(G) \) and \( \text{IsBounded}(A,r) \)
shows \( A \in Fin(G) \)assumes \( \text{IsBounded}(A,IntegerOrder) \)
shows \( A \in Fin(\mathbb{Z} ) \)assumes \( r \text{ is total on } G \) and \( B\in Fin(G) \)
shows \( \text{IsBounded}(B,r) \)assumes \( f:X\rightarrow Y \) and \( N \in Fin(X) \)
shows \( f(N) \in Fin(Y) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( \forall a\in G.\ \exists b\in A.\ a\leq b \)
shows \( \forall a\in G.\ \exists b\in A.\ a\neq b \wedge a\leq b \), \( \neg \text{IsBoundedAbove}(A,r) \), \( A \notin Fin(G) \)