When the operation \(P\) in the group \((G,P)\) is commutative (i.e. the group the abelian) the space \( \text{End}(G,P) \) of homomorphisms of a group \((G,P)\) into itself has a nice structure.
In this section we show that for an abelian group \((G,P)\) the space \( \text{End}(G,P) \) (defined in the Group_ZF_2 theory) forms a ring.
The set of endomorphisms is closed under pointwise addition (derived from the group operation). This is so because the group is abelian.
theorem (in abelian_group) end_pointwise_addition:
assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \)
defines \( F \equiv P \text{ lifted to function space over } G \)
shows \( F\langle f,g\rangle \in \text{End}(G,P) \)proofThe value of a product of endomorphisms on a group element is the product of values.
lemma (in abelian_group) end_pointwise_add_val:
assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \), \( x\in G \), \( F = P \text{ lifted to function space over } G \)
shows \( (\text{InEnd}(F,G,P)\langle f,g\rangle )(x) = (f(x))\cdot (g(x)) \) using assms, group_oper_fun, group0_1_L3B, func_ZF_1_L4 unfolding End_defThe operation of taking the inverse in an abelian group is an endomorphism.
lemma (in abelian_group) end_inverse_group:
shows \( \text{GroupInv}(G,P) \in \text{End}(G,P) \) using inverse_in_group, group_inv_of_two, isAbelian, IsCommutative_def, group0_2_T2, groupAssum, Homomor_def unfolding End_def, IsMorphism_defThe set of homomorphisms of an abelian group is an abelian subgroup of the group of functions from a set to a group, under pointwise addition.
theorem (in abelian_group) end_addition_group:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAgroup}( \text{End}(G,P),\text{InEnd}(F,G,P)) \) and \( \text{InEnd}(F,G,P) \text{ is commutative on } \text{End}(G,P) \)proofEndomorphisms form a subgroup of the space of functions that map the group to itself.
lemma (in abelian_group) end_addition_subgroup:
shows \( \text{IsAsubgroup}( \text{End}(G,P),P \text{ lifted to function space over } G) \) using end_addition_group unfolding IsAsubgroup_defThe neutral element of the group of endomorphisms of a group is the constant function with value equal to the neutral element of the group.
lemma (in abelian_group) end_add_neut_elem:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{ TheNeutralElement}( \text{End}(G,P),\text{InEnd}(F,G,P)) = \text{ConstantFunction}(G,1 ) \) using assms, end_addition_subgroup, lift_group_subgr_neutFor the endomorphisms of a group \(G\) the group operation lifted to the function space over \(G\) is distributive with respect to the composition operation.
lemma (in abelian_group) distributive_comp_pointwise:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsDistributive}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)proofThe endomorphisms of an abelian group is in fact a ring with the previous operations.
theorem (in abelian_group) end_is_ring:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAring}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \) using assms, end_addition_group, end_comp_monoid(1), distributive_comp_pointwise unfolding IsAring_defThe theorems proven in the ring0 context are valid in the abelian_group context as applied to the endomorphisms of \(G\).
using end_is_ring unfolding ring0_def
Now we will prove that any homomorphism \(f:G\to H\) defines a bijective homomorphism between \(G/H\) and \(f(G)\).
A group homomorphism sends the neutral element to the neutral element.
lemma image_neutral:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( f(\text{ TheNeutralElement}(G,P)) = \text{ TheNeutralElement}(H,F) \)proofIf \(f:G\rightarrow H\) is a homomorphism, then it commutes with the inverse
lemma image_inv:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( g\in G \)
shows \( f( \text{GroupInv}(G,P)(g)) = \text{GroupInv}(H,F)(f(g)) \)proofThe preimage of a subgroup is a subgroup
theorem preimage_sub:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAsubgroup}(K,F) \)
shows \( \text{IsAsubgroup}(f^{-1}(K),P) \)proofThe preimage of a normal subgroup is normal
theorem preimage_normal_subgroup:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAnormalSubgroup}(H,F,K) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}(K)) \)proofThe kernel of an homomorphism is a normal subgroup.
corollary kernel_normal_sub:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \) using assms, preimage_normal_subgroup, trivial_normal_subgroup unfolding group0_defThe image of a subgroup is a subgroup
theorem image_subgroup:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( f:G\rightarrow H \), \( \text{IsAsubgroup}(K,P) \)
shows \( \text{IsAsubgroup}(fK,F) \)proofThe image of a group under a homomorphism is a subgroup of the target group.
corollary image_group:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAsubgroup}(f(G),F) \)proofNow we are able to prove the first isomorphism theorem. This theorem states that any group homomorphism \(f:G\to H\) gives an isomorphism between a quotient group of \(G\) and a subgroup of \(H\).
theorem isomorphism_first_theorem:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \) and \( \mathcal{P} \equiv \text{QuotientGroupOp}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \)
shows \( \exists \mathfrak{f} .\ \text{Homomor}(\mathfrak{f} ,G//r,\mathcal{P},f(G),\text{restrict}(F,(f(G))\times (f(G)))) \wedge \mathfrak{f} \in \text{bij}(G//r,f(G)) \)proofThe inverse of a bijective homomorphism is an homomorphism. Meaning that in the previous result, the homomorphism we found is an isomorphism.
theorem bij_homomor:
assumes \( f\in \text{bij}(G,H) \), \( \text{IsAgroup}(G,P) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{Homomor}(converse(f),H,F,G,P) \)proofA very important homomorphism is given by taking every element to its class in a group quotient. Recall that \(\lambda x\in X. p(x)\) is an alternative notation for function defined as a set of pairs, see lemma lambda_fun_alt in theory func1.thy.
lemma (in group0) quotient_map:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \) and \( q \equiv \lambda x\in G.\ \text{QuotientGroupRel}(G,P,H)\{x\} \)
shows \( \text{Homomor}(q,G,P,G//r, \text{QuotientGroupOp}(G,P,H)) \) using groupAssum, assms, group_op_closed, lam_funtype, lamE, EquivClass_1_L10, Group_ZF_2_4_L3, Group_ZF_2_4_L5A, Group_ZF_2_4_T1 unfolding IsAnormalSubgroup_def, QuotientGroupOp_def, Homomor_def, IsMorphism_defIn the context of group0, we may use all results of semigr0.
unfolding semigr0_def using groupAssum, IsAgroup_def, IsAmonoid_def
assumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \)
shows \( F\langle s,r\rangle : X\rightarrow G \)assumes \( F = P \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x)\cdot r(x) \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( f \in \text{End}(G,P) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(g_1\cdot g_2) = f(g_1)\cdot f(g_2) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot (b\cdot c)^{-1} = (a\cdot d^{-1}\cdot c^{-1})\cdot (d\cdot b^{-1}) \), \( a\cdot b\cdot (c\cdot d) = c\cdot a\cdot (b\cdot d) \), \( a\cdot b\cdot (c\cdot d) = a\cdot c\cdot (b\cdot d) \), \( a\cdot (b\cdot c^{-1})\cdot d = a\cdot b\cdot d\cdot c^{-1} \), \( (a\cdot b)\cdot (c\cdot d)^{-1}\cdot (b\cdot d^{-1})^{-1} = a\cdot c^{-1} \)assumes \( f:G\rightarrow G \) and \( \forall g_1\in G.\ \forall g_2\in G.\ f(g_1\cdot g_2)=f(g_1)\cdot f(g_2) \)
shows \( f \in \text{End}(G,P) \)assumes \( f : Y\times Y\rightarrow Y \) and \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow \text{range}(f) \), \( r:X\rightarrow \text{range}(f) \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = f\langle s(x),r(x)\rangle \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \)
defines \( F \equiv P \text{ lifted to function space over } G \)
shows \( F\langle f,g\rangle \in \text{End}(G,P) \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)assumes \( f:X\rightarrow X \) and \( g:X\rightarrow X \)
shows \( \text{Composition}(X)\langle f,g\rangle = f\circ g \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \forall s\in (X\rightarrow G).\ \text{GroupInv}(X\rightarrow G,F)(s) = \text{GroupInv}(G,P)\circ s \)assumes \( H\neq 0 \) and \( H\subseteq G \) and \( H \text{ is closed under } P \) and \( \forall x\in H.\ x^{-1} \in H \)
shows \( \text{IsAsubgroup}(H,P) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \text{IsAgroup}(X\rightarrow G,F) \)assumes \( F = P \text{ lifted to function space over } X \) and \( P \text{ is commutative on } G \)
shows \( F \text{ is commutative on } (X\rightarrow G) \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAgroup}( \text{End}(G,P),\text{InEnd}(F,G,P)) \) and \( \text{InEnd}(F,G,P) \text{ is commutative on } \text{End}(G,P) \)assumes \( F = P \text{ lifted to function space over } X \) and \( \text{IsAsubgroup}(H,F) \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(F,H\times H)) = \text{ConstantFunction}(X,1 ) \)assumes \( \text{Homomor}(f,G,P,H,F) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \)assumes \( f: X\rightarrow Y \), \( g: X\rightarrow Z \) and \( \forall x\in X.\ f(x) = g(x) \)
shows \( f = g \)assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsDistributive}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAring}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) \in \text{bij}(G,G) \) and \( \text{LeftTranslation}(G,P,g) \in \text{bij}(G,G) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( f(\text{ TheNeutralElement}(G,P)) = \text{ TheNeutralElement}(H,F) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( 1 \in H \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(D) \subseteq X \)assumes \( \text{IsAsubgroup}(H,P) \) and \( a\in H \), \( b\in H \)
shows \( a\cdot b \in H \)assumes \( \text{IsAsubgroup}(H,P) \) and \( h\in H \)
shows \( h^{-1}\in H \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( g\in G \)
shows \( f( \text{GroupInv}(G,P)(g)) = \text{GroupInv}(H,F)(f(g)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAsubgroup}(K,F) \)
shows \( \text{IsAsubgroup}(f^{-1}(K),P) \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( \text{IsAsubgroup}(H,P) \), \( \forall g\in G.\ \{g\cdot (h\cdot g^{-1}).\ h\in H\}\subseteq H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAnormalSubgroup}(H,F,K) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}(K)) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( \text{restrict}(f,X) = f \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( f:G\rightarrow H \), \( \text{IsAsubgroup}(K,P) \)
shows \( \text{IsAsubgroup}(fK,F) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \)assumes \( \text{equiv}(A,r) \), \( y\in A \), \( r\{x\} = r\{y\} \)
shows \( \langle x,y\rangle \in r \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} = 1 \)
shows \( a=b \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \) and \( F = \text{ProjFun2}(G,r,P) \) and \( a\in G \), \( b\in G \)
shows \( F\langle r\{a\},r\{b\}\rangle = r\{a\cdot b\} \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{IsAgroup}(G// \text{QuotientGroupRel}(G,P,H), \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAsubgroup}(f(G),F) \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( \text{IsAsubgroup}(H,P) \) and \( g = \text{restrict}(P,H\times H) \)
shows \( \text{GroupInv}(H,g) = \text{restrict}( \text{GroupInv}(G,P),H) \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow a\in H \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)