In this theory we study group homomorphisms.
A homomorphism is a function between groups that preserves the group operations.
In general we may have a homomorphism not only between groups, but also between various algebraic structures with one operation like magmas, semigroups, quasigroups, loops and monoids. In all cases the homomorphism is defined by using the morphism property. In the multiplicative notation we we will write that \(f\) has a morphism property if \(f(x\cdot_G y) = f(x)\cdot_H f(y)\) for all \(x,y\in G\). Below we write this definition in raw set theory notation and use the expression IsMorphism instead of the possible, but longer HasMorphismProperty.
definition
\( \text{IsMorphism}(G,P,F,f) \equiv \forall g_1\in G.\ \forall g_2\in G.\ f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \)
A function \(f:G\rightarrow H\) between algebraic structures \((G,\cdot_G)\) and \((H,\cdot_H)\) with one operation (each) is a homomorphism if it has the morphism property.
definition
\( \text{Homomor}(f,G,P,H,F) \equiv f:G\rightarrow H \wedge \text{IsMorphism}(G,P,F,f) \)
Now a lemma about the definition:
lemma homomor_eq:
assumes \( \text{Homomor}(f,G,P,H,F) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \) using assms unfolding Homomor_def, IsMorphism_defAn endomorphism is a homomorphism from a group to the same group. We define \( \text{End}(G,P) \) as the set of endomorphisms for a given group. As we show later when the group is abelian, the set of endomorphisms with pointwise adddition and composition as multiplication forms a ring.
definition
\( \text{End}(G,P) \equiv \{f\in G\rightarrow G.\ \text{Homomor}(f,G,P,G,P)\} \)
The defining property of an endomorphism written in notation used in group0 context:
lemma (in group0) endomor_eq:
assumes \( f \in \text{End}(G,P) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(g_1\cdot g_2) = f(g_1)\cdot f(g_2) \) using assms, homomor_eq unfolding End_defA function that maps a group \(G\) into itself and satisfies \(f(g_1\cdot g2) = f(g_1)\cdot f(g_2)\) is an endomorphism.
lemma (in group0) eq_endomor:
assumes \( f:G\rightarrow G \) and \( \forall g_1\in G.\ \forall g_2\in G.\ f(g_1\cdot g_2)=f(g_1)\cdot f(g_2) \)
shows \( f \in \text{End}(G,P) \) using assms unfolding End_def, Homomor_def, IsMorphism_defThe set of endomorphisms forms a submonoid of the monoid of function from a set to that set under composition.
lemma (in group0) end_composition:
assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)proofWe will use some binary operations that are naturally defined on the function space \(G\rightarrow G\), but we consider them restricted to the endomorphisms of \(G\). To shorten the notation in such case we define an abbreviation \( \text{InEnd}(F,G,P) \) which restricts a binary operation \(F\) to the set of endomorphisms of \(G\).
abbreviation
\( \text{InEnd}(F,G,P) \equiv \text{restrict}(F, \text{End}(G,P)\times \text{End}(G,P)) \)
Endomoprhisms of a group form a monoid with composition as the binary operation, and the identity map as the neutral element.
theorem (in group0) end_comp_monoid:
shows \( \text{IsAmonoid}( \text{End}(G,P),\text{InEnd}( \text{Composition}(G),G,P)) \) and \( \text{ TheNeutralElement}( \text{End}(G,P),\text{InEnd}( \text{Composition}(G),G,P)) = id(G) \)proofThe set of endomorphisms is closed under pointwise addition (derived from the group operation). This is so because the group is abelian.
theorem (in abelian_group) end_pointwise_addition:
assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \)
defines \( F \equiv P \text{ lifted to function space over } G \)
shows \( F\langle f,g\rangle \in \text{End}(G,P) \)proofThe value of a product of endomorphisms on a group element is the product of values.
lemma (in abelian_group) end_pointwise_add_val:
assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \), \( x\in G \), \( F = P \text{ lifted to function space over } G \)
shows \( (\text{InEnd}(F,G,P)\langle f,g\rangle )(x) = (f(x))\cdot (g(x)) \) using assms, group_oper_fun, group0_1_L3B, func_ZF_1_L4 unfolding End_defThe operation of taking the inverse in an abelian group is an endomorphism.
lemma (in abelian_group) end_inverse_group:
shows \( \text{GroupInv}(G,P) \in \text{End}(G,P) \) using inverse_in_group, group_inv_of_two, isAbelian, IsCommutative_def, group0_2_T2, groupAssum, Homomor_def unfolding End_def, IsMorphism_defThe set of homomorphisms of an abelian group is an abelian subgroup of the group of functions from a set to a group, under pointwise addition.
theorem (in abelian_group) end_addition_group:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAgroup}( \text{End}(G,P),\text{InEnd}(F,G,P)) \) and \( \text{InEnd}(F,G,P) \text{ is commutative on } \text{End}(G,P) \)proofEndomorphisms form a subgroup of the space of functions that map the group to itself.
lemma (in abelian_group) end_addition_subgroup:
shows \( \text{IsAsubgroup}( \text{End}(G,P),P \text{ lifted to function space over } G) \) using end_addition_group unfolding IsAsubgroup_defThe neutral element of the group of endomorphisms of a group is the constant function with value equal to the neutral element of the group.
lemma (in abelian_group) end_add_neut_elem:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{ TheNeutralElement}( \text{End}(G,P),\text{InEnd}(F,G,P)) = \text{ConstantFunction}(G,1 ) \) using assms, end_addition_subgroup, lift_group_subgr_neutFor the endomorphisms of a group \(G\) the group operation lifted to the function space over \(G\) is distributive with respect to the composition operation.
lemma (in abelian_group) distributive_comp_pointwise:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsDistributive}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)proofThe endomorphisms of an abelian group is in fact a ring with the previous operations.
theorem (in abelian_group) end_is_ring:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAring}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \) using assms, end_addition_group, end_comp_monoid(1), distributive_comp_pointwise unfolding IsAring_defThe theorems proven in the ring0 context are valid in the abelian_group context as applied to the endomorphisms of \(G\).
using end_is_ring unfolding ring0_def
Now we will prove that any homomorphism \(f:G\to H\) defines a bijective homomorphism between \(G/H\) and \(f(G)\).
A group homomorphism sends the neutral element to the neutral element.
lemma image_neutral:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( f(\text{ TheNeutralElement}(G,P)) = \text{ TheNeutralElement}(H,F) \)proofIf \(f:G\rightarrow H\) is a homomorphism, then it commutes with the inverse
lemma image_inv:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( g\in G \)
shows \( f( \text{GroupInv}(G,P)(g)) = \text{GroupInv}(H,F)(f(g)) \)proofThe preimage of a subgroup is a subgroup
theorem preimage_sub:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAsubgroup}(K,F) \)
shows \( \text{IsAsubgroup}(f^{-1}(K),P) \)proofThe preimage of a normal subgroup is normal
theorem preimage_normal_subgroup:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAnormalSubgroup}(H,F,K) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}(K)) \)proofThe kernel of an homomorphism is a normal subgroup.
corollary kernel_normal_sub:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \) using assms, preimage_normal_subgroup, trivial_normal_subgroup unfolding group0_defThe image of a subgroup is a subgroup
theorem image_subgroup:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( f:G\rightarrow H \), \( \text{IsAsubgroup}(K,P) \)
shows \( \text{IsAsubgroup}(fK,F) \)proofThe image of a group under a homomorphism is a subgroup of the target group.
corollary image_group:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAsubgroup}(f(G),F) \)proofNow we are able to prove the first isomorphism theorem. This theorem states that any group homomorphism \(f:G\to H\) gives an isomorphism between a quotient group of \(G\) and a subgroup of \(H\).
theorem isomorphism_first_theorem:
assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \) and \( \mathcal{P} \equiv \text{QuotientGroupOp}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \)
shows \( \exists \mathfrak{f} .\ \text{Homomor}(\mathfrak{f} ,G//r,\mathcal{P},f(G),\text{restrict}(F,(f(G))\times (f(G)))) \wedge \mathfrak{f} \in \text{bij}(G//r,f(G)) \)proofThe inverse of a bijective homomorphism is an homomorphism. Meaning that in the previous result, the homomorphism we found is an isomorphism.
theorem bij_homomor:
assumes \( f\in \text{bij}(G,H) \), \( \text{IsAgroup}(G,P) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{Homomor}(converse(f),H,F,G,P) \)proofA very important homomorphism is given by taking every element to its class in a group quotient. Recall that \(\lambda x\in X. p(x)\) is an alternative notation for function defined as a set of pairs, see lemma lambda_fun_alt in theory func1.thy.
lemma (in group0) quotient_map:
assumes \( \text{IsAnormalSubgroup}(G,P,H) \)
defines \( r \equiv \text{QuotientGroupRel}(G,P,H) \) and \( q \equiv \lambda x\in G.\ \text{QuotientGroupRel}(G,P,H)\{x\} \)
shows \( \text{Homomor}(q,G,P,G//r, \text{QuotientGroupOp}(G,P,H)) \) using groupAssum, assms, group_op_closed, lam_funtype, lamE, EquivClass_1_L10, Group_ZF_2_4_L3, Group_ZF_2_4_L5A, Group_ZF_2_4_T1 unfolding IsAnormalSubgroup_def, QuotientGroupOp_def, Homomor_def, IsMorphism_defIn the context of group0, we may use all results of semigr0.
unfolding semigr0_def using groupAssum, IsAgroup_def, IsAmonoid_def
assumes \( \text{Homomor}(f,G,P,H,F) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(P\langle g_1,g_2\rangle ) = F\langle f(g_1),f(g_2)\rangle \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( f \in \text{End}(G,P) \), \( g_1\in G \), \( g_2\in G \)
shows \( f(g_1\cdot g_2) = f(g_1)\cdot f(g_2) \)assumes \( f:G\rightarrow G \) and \( \forall g_1\in G.\ \forall g_2\in G.\ f(g_1\cdot g_2)=f(g_1)\cdot f(g_2) \)
shows \( f \in \text{End}(G,P) \)assumes \( f:X\rightarrow X \) and \( g:X\rightarrow X \)
shows \( \text{Composition}(X)\langle f,g\rangle = f\circ g \)assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)assumes \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{IsAmonoid}(H,\text{restrict}(f,H\times H)) \)assumes \( \text{IsAmonoid}(G,f) \) and \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(f,H\times H)) = \text{ TheNeutralElement}(G,f) \)assumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \)
shows \( F\langle s,r\rangle : X\rightarrow G \)assumes \( F = P \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x)\cdot r(x) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot (b\cdot c)^{-1} = (a\cdot d^{-1}\cdot c^{-1})\cdot (d\cdot b^{-1}) \), \( a\cdot b\cdot (c\cdot d) = c\cdot a\cdot (b\cdot d) \), \( a\cdot b\cdot (c\cdot d) = a\cdot c\cdot (b\cdot d) \), \( a\cdot (b\cdot c^{-1})\cdot d = a\cdot b\cdot d\cdot c^{-1} \), \( (a\cdot b)\cdot (c\cdot d)^{-1}\cdot (b\cdot d^{-1})^{-1} = a\cdot c^{-1} \)assumes \( f : Y\times Y\rightarrow Y \) and \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow \text{range}(f) \), \( r:X\rightarrow \text{range}(f) \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = f\langle s(x),r(x)\rangle \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \)
defines \( F \equiv P \text{ lifted to function space over } G \)
shows \( F\langle f,g\rangle \in \text{End}(G,P) \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( f_1\in \text{End}(G,P) \), \( f_2\in \text{End}(G,P) \)
shows \( \text{Composition}(G)\langle f_1,f_2\rangle \in \text{End}(G,P) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \forall s\in (X\rightarrow G).\ \text{GroupInv}(X\rightarrow G,F)(s) = \text{GroupInv}(G,P)\circ s \)assumes \( H\neq 0 \) and \( H\subseteq G \) and \( H \text{ is closed under } P \) and \( \forall x\in H.\ x^{-1} \in H \)
shows \( \text{IsAsubgroup}(H,P) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \text{IsAgroup}(X\rightarrow G,F) \)assumes \( F = P \text{ lifted to function space over } X \) and \( P \text{ is commutative on } G \)
shows \( F \text{ is commutative on } (X\rightarrow G) \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAgroup}( \text{End}(G,P),\text{InEnd}(F,G,P)) \) and \( \text{InEnd}(F,G,P) \text{ is commutative on } \text{End}(G,P) \)assumes \( F = P \text{ lifted to function space over } X \) and \( \text{IsAsubgroup}(H,F) \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(F,H\times H)) = \text{ConstantFunction}(X,1 ) \)assumes \( f: X\rightarrow Y \), \( g: X\rightarrow Z \) and \( \forall x\in X.\ f(x) = g(x) \)
shows \( f = g \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsDistributive}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAring}( \text{End}(G,P),\text{InEnd}(F,G,P),\text{InEnd}( \text{Composition}(G),G,P)) \)assumes \( g\in G \), \( a\in G \)
shows \( \text{RightTranslation}(G,P,g)(a) = a\cdot g \), \( \text{LeftTranslation}(G,P,g)(a) = g\cdot a \)assumes \( g\in G \)
shows \( \text{RightTranslation}(G,P,g) \in \text{bij}(G,G) \) and \( \text{LeftTranslation}(G,P,g) \in \text{bij}(G,G) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( a\in G \) and \( b\in G \) and \( a\cdot b = 1 \)
shows \( a = b^{-1} \) and \( b = a^{-1} \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( f(\text{ TheNeutralElement}(G,P)) = \text{ TheNeutralElement}(H,F) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( 1 \in H \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(A) = \{x\in X.\ f(x) \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( f^{-1}(D) \subseteq X \)assumes \( \text{IsAsubgroup}(H,P) \) and \( a\in H \), \( b\in H \)
shows \( a\cdot b \in H \)assumes \( \text{IsAsubgroup}(H,P) \) and \( h\in H \)
shows \( h^{-1}\in H \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( g\in G \)
shows \( f( \text{GroupInv}(G,P)(g)) = \text{GroupInv}(H,F)(f(g)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( H \subseteq G \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAsubgroup}(K,F) \)
shows \( \text{IsAsubgroup}(f^{-1}(K),P) \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( \text{IsAsubgroup}(H,P) \), \( \forall g\in G.\ \{g\cdot (h\cdot g^{-1}).\ h\in H\}\subseteq H \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( \text{IsAnormalSubgroup}(H,F,K) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}(K)) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( f:X\rightarrow Y \)
shows \( \text{restrict}(f,X) = f \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \), \( f:G\rightarrow H \), \( \text{IsAsubgroup}(K,P) \)
shows \( \text{IsAsubgroup}(fK,F) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAnormalSubgroup}(G,P,f^{-1}\{\text{ TheNeutralElement}(H,F)\}) \)assumes \( \text{equiv}(A,r) \), \( y\in A \), \( r\{x\} = r\{y\} \)
shows \( \langle x,y\rangle \in r \)assumes \( a\in G \), \( b\in G \) and \( a\cdot b^{-1} = 1 \)
shows \( a=b \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,P) \) and \( F = \text{ProjFun2}(G,r,P) \) and \( a\in G \), \( b\in G \)
shows \( F\langle r\{a\},r\{b\}\rangle = r\{a\cdot b\} \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{IsAgroup}(G// \text{QuotientGroupRel}(G,P,H), \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{IsAgroup}(G,P) \), \( \text{IsAgroup}(H,F) \), \( \text{Homomor}(f,G,P,H,F) \)
shows \( \text{IsAsubgroup}(f(G),F) \)assumes \( f:X\rightarrow Y \)
shows \( f(B) \subseteq \text{range}(f) \) and \( f(B) \subseteq Y \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( \text{IsAsubgroup}(H,P) \) and \( g = \text{restrict}(P,H\times H) \)
shows \( \text{GroupInv}(H,g) = \text{restrict}( \text{GroupInv}(G,P),H) \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow a\in H \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)