This theory is devoted to the part of ring theory specific the construction of real numbers in the Real_ZF_x series of theories. The goal is to show that classes of almost homomorphisms form a ring.
Almost homomorphisms do not form a ring as the regular homomorphisms do because the lifted group operation is not distributive with respect to composition -- we have \(s\circ (r\cdot q) \neq s\circ r\cdot s\circ q\) in general. However, we do have \(s\circ (r\cdot q) \approx s\circ r\cdot s\circ q\) in the sense of the equivalence relation defined by the group of finite range functions (that is a normal subgroup of almost homomorphisms, if the group is abelian). This allows to define a natural ring structure on the classes of almost homomorphisms.
The next lemma provides a formula useful for proving that two sides of the distributive law equation for almost homomorphisms are almost equal.
lemma (in group1) Ring_ZF_1_1_L1:
assumes A1: \( s\in AH \), \( r\in AH \), \( q\in AH \) and A2: \( n\in G \)
shows \( ((s\circ (r\bullet q))(n))\cdot (((s\circ r)\bullet (s\circ q))(n))^{-1}= \delta (s,\langle r(n),q(n)\rangle ) \), \( ((r\bullet q)\circ s)(n) = ((r\circ s)\bullet (q\circ s))(n) \)proofThe sides of the distributive law equations for almost homomorphisms are almost equal.
lemma (in group1) Ring_ZF_1_1_L2:
assumes A1: \( s\in AH \), \( r\in AH \), \( q\in AH \)
shows \( s\circ (r\bullet q) \cong (s\circ r)\bullet (s\circ q) \), \( (r\bullet q)\circ s = (r\circ s)\bullet (q\circ s) \)proofThe essential condition to show the distributivity for the operations defined on classes of almost homomorphisms.
lemma (in group1) Ring_ZF_1_1_L3:
assumes A1: \( R = \text{QuotientGroupRel}(AH,Op1,FR) \) and A2: \( a \in AH//R \), \( b \in AH//R \), \( c \in AH//R \) and A3: \( A = \text{ProjFun2}(AH,R,Op1) \), \( M = \text{ProjFun2}(AH,R,Op2) \)
shows \( M\langle a,A\langle b,c\rangle \rangle = A\langle M\langle a,b\rangle ,M\langle a,c\rangle \rangle \wedge \) \( M\langle A\langle b,c\rangle ,a\rangle = A\langle M\langle b,a\rangle ,M\langle c,a\rangle \rangle \)proofThe projection of the first group operation on almost homomorphisms is distributive with respect to the second group operation.
lemma (in group1) Ring_ZF_1_1_L4:
assumes A1: \( R = \text{QuotientGroupRel}(AH,Op1,FR) \) and A2: \( A = \text{ProjFun2}(AH,R,Op1) \), \( M = \text{ProjFun2}(AH,R,Op2) \)
shows \( \text{IsDistributive}(AH//R,A,M) \)proofThe classes of almost homomorphisms form a ring.
theorem (in group1) Ring_ZF_1_1_T1:
assumes \( R = \text{QuotientGroupRel}(AH,Op1,FR) \) and \( A = \text{ProjFun2}(AH,R,Op1) \), \( M = \text{ProjFun2}(AH,R,Op2) \)
shows \( \text{IsAring}(AH//R,A,M) \) using assms, QuotientGroupOp_def, Group_ZF_3_3_T1, Group_ZF_3_4_T2, Ring_ZF_1_1_L4, IsAring_defassumes \( \text{IsAgroup}(G,f) \) and \( f \text{ is commutative on } G \) and \( AH = \text{AlmostHoms}(G,f) \), \( Op1 = \text{AlHomOp1}(G,f) \) and \( s \in AH \), \( r \in AH \)
shows \( Op1\langle s,r\rangle \in AH \), \( \text{GroupInv}(AH,Op1)(r) \in AH \), \( Op1\langle s, \text{GroupInv}(AH,Op1)(r)\rangle \in AH \)assumes \( s\in AH \), \( r\in AH \)
shows \( \text{Composition}(G)\langle s,r\rangle \in AH \), \( s\circ r \in AH \)assumes \( s \in AH \) and \( x\in G\times G \)
shows \( \text{fst}(x)\cdot \text{snd}(x) \in G \), \( s(\text{fst}(x)\cdot \text{snd}(x)) \in G \), \( s(\text{fst}(x)) \in G \), \( s(\text{snd}(x)) \in G \), \( \delta (s,x) \in G \), \( s(\text{fst}(x))\cdot s(\text{snd}(x)) \in G \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( s\in AH \), \( r\in AH \) and \( n\in G \)
shows \( (s\bullet r)(n) = s(n)\cdot r(n) \)assumes \( s\in AH \), \( r\in AH \) and \( m\in G \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in G \)assumes \( s\in AH \) and \( m\in G \), \( n\in G \)
shows \( s(m\cdot n) = s(m)\cdot s(n)\cdot \delta (s,\langle m,n\rangle ) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b\cdot a^{-1} = b \), \( a^{-1}\cdot b\cdot a = b \), \( a^{-1}\cdot (b\cdot a) = b \), \( a\cdot (b\cdot a^{-1}) = b \)assumes \( \forall x\in X.\ a(x) \in Y \) and \( \{b(y).\ y\in Y\} \in Fin(Z) \)
shows \( \{b(a(x)).\ x\in X\} \in Fin(Z) \)assumes \( s\in AH \), \( r\in AH \), \( q\in AH \) and \( n\in G \)
shows \( ((s\circ (r\bullet q))(n))\cdot (((s\circ r)\bullet (s\circ q))(n))^{-1}= \delta (s,\langle r(n),q(n)\rangle ) \), \( ((r\bullet q)\circ s)(n) = ((r\circ s)\bullet (q\circ s))(n) \)assumes \( s\in AH \), \( r\in AH \) and \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)
shows \( s\cong r \)assumes \( \text{equiv}(A,r) \) and \( \text{Congruent2}(r,f) \) and \( x\in A \), \( y\in A \)
shows \( \text{ProjFun2}(A,r,f)\langle r\{x\},r\{y\}\rangle = r\{f\langle x,y\rangle \} \)assumes \( s\in AH \), \( r\in AH \), \( q\in AH \)
shows \( s\circ (r\bullet q) \cong (s\circ r)\bullet (s\circ q) \), \( (r\bullet q)\circ s = (r\circ s)\bullet (q\circ s) \)assumes \( R = \text{QuotientGroupRel}(AH,Op1,FR) \) and \( a \in AH//R \), \( b \in AH//R \), \( c \in AH//R \) and \( A = \text{ProjFun2}(AH,R,Op1) \), \( M = \text{ProjFun2}(AH,R,Op2) \)
shows \( M\langle a,A\langle b,c\rangle \rangle = A\langle M\langle a,b\rangle ,M\langle a,c\rangle \rangle \wedge \) \( M\langle A\langle b,c\rangle ,a\rangle = A\langle M\langle b,a\rangle ,M\langle c,a\rangle \rangle \)assumes \( R = \text{QuotientGroupRel}(AH,Op1,FR) \)
shows \( \text{IsAmonoid}(AH//R, \text{ProjFun2}(AH,R,Op2)) \), \( R\{id(G)\} = \text{ TheNeutralElement}(AH//R, \text{ProjFun2}(AH,R,Op2)) \)assumes \( R = \text{QuotientGroupRel}(AH,Op1,FR) \) and \( A = \text{ProjFun2}(AH,R,Op1) \), \( M = \text{ProjFun2}(AH,R,Op2) \)
shows \( \text{IsDistributive}(AH//R,A,M) \)