This theory file considers the set of integers as an ordered ring.
In this section we show that integers form a commutative ring.
The next lemma provides the condition to show that addition is distributive with respect to multiplication.
lemma (in int0) Int_ZF_1_1_L1:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \) using assms, Int_ZF_1_L2, zadd_zmult_distrib, zadd_zmult_distrib2Integers form a commutative ring, hence we can use theorems proven in ring0 context (locale).
lemma (in int0) Int_ZF_1_1_L2:
shows \( \text{IsAring}(\mathbb{Z} ,IntegerAddition,IntegerMultiplication) \), \( IntegerMultiplication \text{ is commutative on } \mathbb{Z} \), \( ring0(\mathbb{Z} ,IntegerAddition,IntegerMultiplication) \)proofZero and one are integers.
lemma (in int0) int_zero_one_are_int:
shows \( 0 \in \mathbb{Z} \), \( 1 \in \mathbb{Z} \) using Int_ZF_1_1_L2, Ring_ZF_1_L2Negative of zero is zero.
lemma (in int0) int_zero_one_are_intA:
shows \( ( - 0 ) = 0 \) using Int_ZF_1_T2, group_inv_of_oneProperties with one integer.
lemma (in int0) Int_ZF_1_1_L4:
assumes A1: \( a \in \mathbb{Z} \)
shows \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( 0 \cdot a = 0 \), \( a\cdot 0 = 0 \), \( ( - a) \in \mathbb{Z} \), \( ( - ( - a)) = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \)proofProperties that require two integers.
lemma (in int0) Int_ZF_1_1_L5:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b \in \mathbb{Z} \), \( a - b \in \mathbb{Z} \), \( a\cdot b \in \mathbb{Z} \), \( a + b = b + a \), \( a\cdot b = b\cdot a \), \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot ( - b) = a\cdot b \) using assms, Int_ZF_1_1_L2, Ring_ZF_1_L4, Ring_ZF_1_L9, Ring_ZF_1_L7, Ring_ZF_1_L7A, Int_ZF_1_L4\(2\) and \(3\) are integers.
lemma (in int0) int_two_three_are_int:
shows \( 2 \in \mathbb{Z} \), \( 3 \in \mathbb{Z} \) using int_zero_one_are_int, Int_ZF_1_1_L5Another property with two integers.
lemma (in int0) Int_ZF_1_1_L5B:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a - ( - b) = a + b \) using assms, Int_ZF_1_1_L2, Ring_ZF_1_L9Properties that require three integers.
lemma (in int0) Int_ZF_1_1_L6:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a - (b + c) = a - b - c \), \( a - (b - c) = a - b + c \), \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \) using assms, Int_ZF_1_1_L2, Ring_ZF_1_L10, Ring_ZF_1_L8One more property with three integers.
lemma (in int0) Int_ZF_1_1_L6A:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + (b - c) = a + b - c \) using assms, Int_ZF_1_1_L2, Ring_ZF_1_L10AAssociativity of addition and multiplication.
lemma (in int0) Int_ZF_1_1_L7:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \) using assms, Int_ZF_1_1_L2, Ring_ZF_1_L11In this section we collect lemmas about identities related to rearranging the terms in expresssions
A formula with a positive integer.
lemma (in int0) Int_ZF_1_2_L1:
assumes \( 0 \leq a \)
shows \( abs(a) + 1 = abs(a + 1 ) \) using assms, Int_ZF_2_L16, Int_ZF_2_L12AA formula with two integers, one positive.
lemma (in int0) Int_ZF_1_2_L2:
assumes A1: \( a\in \mathbb{Z} \) and A2: \( 0 \leq b \)
shows \( a + (abs(b) + 1 )\cdot a = (abs(b + 1 ) + 1 )\cdot a \)proofA couple of formulae about canceling opposite integers.
lemma (in int0) Int_ZF_1_2_L3:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b - a = b \), \( a + (b - a) = b \), \( a + b - b = a \), \( a - b + b = a \), \( ( - a) + (a + b) = b \), \( a + (b - a) = b \), \( ( - b) + (a + b) = a \), \( a - (b + a) = - b \), \( a - (a + b) = - b \), \( a - (a - b) = b \), \( a - b - a = - b \), \( a - b - (a + b) = ( - b) - b \) using assms, Int_ZF_1_T2, group0_4_L6A, inv_cancel_two, group0_2_L16A, group0_4_L6AA, group0_4_L6AB, group0_4_L6F, group0_4_L6ACSubtracting one does not increase integers. This may be moved to a theory about ordered rings one day.
lemma (in int0) Int_ZF_1_2_L3A:
assumes A1: \( a\leq b \)
shows \( a - 1 \leq b \)proofSubtracting one does not increase integers, special case.
lemma (in int0) Int_ZF_1_2_L3AA:
assumes A1: \( a\in \mathbb{Z} \)
shows \( a - 1 \leq a \), \( a - 1 \neq a \), \( \neg (a\leq a - 1 ) \), \( \neg (a + 1 \leq a) \), \( \neg (1 + a \leq a) \)proofA formula with a nonpositive integer.
lemma (in int0) Int_ZF_1_2_L4:
assumes \( a\leq 0 \)
shows \( abs(a) + 1 = abs(a - 1 ) \) using assms, int_zero_one_are_int, Int_ZF_1_2_L3A, Int_ZF_2_T1, OrderedGroup_ZF_3_L3A, Int_ZF_2_L1A, int_zero_one_are_int, Int_ZF_1_1_L5A formula with two integers, one negative.
lemma (in int0) Int_ZF_1_2_L5:
assumes A1: \( a\in \mathbb{Z} \) and A2: \( b\leq 0 \)
shows \( a + (abs(b) + 1 )\cdot a = (abs(b - 1 ) + 1 )\cdot a \)proofA rearrangement with four integers.
lemma (in int0) Int_ZF_1_2_L6:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( a - (b - 1 )\cdot c = (d - b\cdot c) - (d - a - c) \)proofSome other rearrangements with two integers.
lemma (in int0) Int_ZF_1_2_L7:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a\cdot b = (a - 1 )\cdot b + b \), \( a\cdot (b + 1 ) = a\cdot b + a \), \( (b + 1 )\cdot a = b\cdot a + a \), \( (b + 1 )\cdot a = a + b\cdot a \) using assms, Int_ZF_1_1_L1, Int_ZF_1_1_L5, int_zero_one_are_int, Int_ZF_1_1_L6, Int_ZF_1_1_L4, Int_ZF_1_T2, inv_cancel_twoAnother rearrangement with two integers.
lemma (in int0) Int_ZF_1_2_L8:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + 1 + (b + 1 ) = b + a + 2 \) using assms, int_zero_one_are_int, Int_ZF_1_T2, group0_4_L8A couple of rearrangement with three integers.
lemma (in int0) Int_ZF_1_2_L9:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (a - b) + (b - c) = a - c \), \( (a - b) - (a - c) = c - b \), \( a + (b + (c - a - b)) = c \), \( ( - a) - b + c = c - a - b \), \( ( - b) - a + c = c - a - b \), \( ( - (( - a) + b + c)) = a - b - c \), \( a + b + c - a = b + c \), \( a + b - (a + c) = b - c \) using assms, Int_ZF_1_T2, group0_4_L4B, group0_4_L6D, group0_4_L4D, group0_4_L6B, group0_4_L6EAnother couple of rearrangements with three integers.
lemma (in int0) Int_ZF_1_2_L9A:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( ( - (a - b - c)) = c + b - a \)proofAnother rearrangement with three integers.
lemma (in int0) Int_ZF_1_2_L10:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (a + 1 )\cdot b + (c + 1 )\cdot b = (c + a + 2 )\cdot b \)proofA technical rearrangement involing inequalities with absolute value.
lemma (in int0) Int_ZF_1_2_L10A:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( e\in \mathbb{Z} \) and A2: \( abs(a\cdot b - c) \leq d \), \( abs(b\cdot a - e) \leq f \)
shows \( abs(c - e) \leq f + d \)proofSome arithmetics.
lemma (in int0) Int_ZF_1_2_L11:
assumes A1: \( a\in \mathbb{Z} \)
shows \( a + 1 + 2 = a + 3 \), \( a = 2 \cdot a - a \)proofA simple rearrangement with three integers.
lemma (in int0) Int_ZF_1_2_L12:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (b - c)\cdot a = a\cdot b - a\cdot c \) using assms, Int_ZF_1_1_L6, Int_ZF_1_1_L5A big rearrangement with five integers.
lemma (in int0) Int_ZF_1_2_L13:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \), \( x\in \mathbb{Z} \)
shows \( (x + (a\cdot x + b) + c)\cdot d = d\cdot (a + 1 )\cdot x + (b\cdot d + c\cdot d) \)proofRerrangement about adding linear functions.
lemma (in int0) Int_ZF_1_2_L14:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \), \( x\in \mathbb{Z} \)
shows \( (a\cdot x + b) + (c\cdot x + d) = (a + c)\cdot x + (b + d) \) using assms, Int_ZF_1_1_L2, Ring_ZF_2_L3A rearrangement with four integers. Again we have to use the generic set notation to use a theorem proven in different context.
lemma (in int0) Int_ZF_1_2_L15:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \) and A2: \( a = b - c - d \)
shows \( d = b - a - c \), \( d = ( - a) + b - c \), \( b = a + d + c \)proofA rearrangement with four integers. Property of groups.
lemma (in int0) Int_ZF_1_2_L16:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( a + (b - c) + d = a + b + d - c \) using assms, Int_ZF_1_T2, group0_4_L8Some rearrangements with three integers. Properties of groups.
lemma (in int0) Int_ZF_1_2_L17:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b - c + (c - b) = a \), \( a + (b + c) - c = a + b \)proofAnother rearrangement with three integers. Property of abelian groups.
lemma (in int0) Int_ZF_1_2_L18:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b - c + (c - a) = b \)proofWe already know from Int_ZF that integers with addition form a linearly ordered group. To show that integers form an ordered ring we need the fact that the set of nonnegative integers is closed under multiplication.
We start with the property that a product of nonnegative integers is nonnegative. The proof is by induction and the next lemma is the induction step.
lemma (in int0) Int_ZF_1_3_L1:
assumes A1: \( 0 \leq a \), \( 0 \leq b \) and A3: \( 0 \leq a\cdot b \)
shows \( 0 \leq a\cdot (b + 1 ) \)proofProduct of nonnegative integers is nonnegative.
lemma (in int0) Int_ZF_1_3_L2:
assumes A1: \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a\cdot b \)proofThe set of nonnegative integers is closed under multiplication.
lemma (in int0) Int_ZF_1_3_L2A:
shows \( \mathbb{Z} ^+ \text{ is closed under } IntegerMultiplication \)proofIntegers form an ordered ring. All theorems proven in the ring1 context are valid in int0 context.
theorem (in int0) Int_ZF_1_3_T1:
shows \( \text{IsAnOrdRing}(\mathbb{Z} ,IntegerAddition,IntegerMultiplication,IntegerOrder) \), \( ring1(\mathbb{Z} ,IntegerAddition,IntegerMultiplication,IntegerOrder) \) using Int_ZF_1_1_L2, Int_ZF_2_L1B, Int_ZF_1_3_L2A, Int_ZF_2_T1, OrdRing_ZF_1_L6, OrdRing_ZF_1_L2Product of integers that are greater that one is greater than one. The proof is by induction and the next step is the induction step.
lemma (in int0) Int_ZF_1_3_L3_indstep:
assumes A1: \( 1 \leq a \), \( 1 \leq b \) and A2: \( 1 \leq a\cdot b \)
shows \( 1 \leq a\cdot (b + 1 ) \)proofProduct of integers that are greater that one is greater than one.
lemma (in int0) Int_ZF_1_3_L3:
assumes A1: \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)proof\(|a\cdot (-b)| = |(-a)\cdot b| = |(-a)\cdot (-b)| = |a\cdot b|\) This is a property of ordered rings..
lemma (in int0) Int_ZF_1_3_L4:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( abs(( - a)\cdot b) = abs(a\cdot b) \), \( abs(a\cdot ( - b)) = abs(a\cdot b) \), \( abs(( - a)\cdot ( - b)) = abs(a\cdot b) \) using assms, Int_ZF_1_1_L5, Int_ZF_2_L17Absolute value of a product is the product of absolute values. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L5:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( abs(a\cdot b) = abs(a)\cdot abs(b) \) using assms, Int_ZF_1_3_T1, OrdRing_ZF_2_L5Double nonnegative is nonnegative. Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L5A:
assumes \( 0 \leq a \)
shows \( 0 \leq 2 \cdot a \) using assms, Int_ZF_1_3_T1, OrdRing_ZF_1_L5AThe next lemma shows what happens when one integer is not greater or equal than another.
lemma (in int0) Int_ZF_1_3_L6:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( \neg (b\leq a) \longleftrightarrow a + 1 \leq b \)proofAnother form of stating that there are no integers between integers \(m\) and \(m+1\).
corollary (in int0) no_int_between:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( b\leq a \vee a + 1 \leq b \) using A1, Int_ZF_1_3_L6Another way of saying what it means that one integer is not greater or equal than another.
corollary (in int0) Int_ZF_1_3_L6A:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and A2: \( \neg (b\leq a) \)
shows \( a \leq b - 1 \)proofYet another form of stating that there are nointegers between \(m\) and \(m+1\).
lemma (in int0) no_int_between1:
assumes A1: \( a\leq b \) and A2: \( a\neq b \)
shows \( a + 1 \leq b \), \( a \leq b - 1 \)proofWe can decompose proofs into three cases: \(a=b\), \(a\leq b-1b\) or \(a\geq b+1b\).
lemma (in int0) Int_ZF_1_3_L6B:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a=b \vee (a \leq b - 1 ) \vee (b + 1 \leq a) \)proofA special case of Int_ZF_1_3_L6B when \(b=0\). This allows to split the proofs in cases \(a\leq -1\), \(a=0\) and \(a\geq 1\).
corollary (in int0) Int_ZF_1_3_L6C:
assumes A1: \( a\in \mathbb{Z} \)
shows \( a= 0 \vee (a \leq - 1 ) \vee (1 \leq a) \)proofAn integer is not less or equal zero iff it is greater or equal one.
lemma (in int0) Int_ZF_1_3_L7:
assumes \( a\in \mathbb{Z} \)
shows \( \neg (a\leq 0 ) \longleftrightarrow 1 \leq a \) using assms, int_zero_one_are_int, Int_ZF_1_3_L6, Int_ZF_1_1_L4Product of positive integers is positive.
lemma (in int0) Int_ZF_1_3_L8:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and \( \neg (a\leq 0 ) \), \( \neg (b\leq 0 ) \)
shows \( \neg ((a\cdot b) \leq 0 ) \) using assms, Int_ZF_1_3_L7, Int_ZF_1_3_L3, Int_ZF_1_1_L5, Int_ZF_1_3_L7If \(a\cdot b\) is nonnegative and \(b\) is positive, then \(a\) is nonnegative. Proof by contradiction.
lemma (in int0) Int_ZF_1_3_L9:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and A2: \( \neg (b\leq 0 ) \) and A3: \( a\cdot b \leq 0 \)
shows \( a\leq 0 \)proofOne integer is less or equal another iff the difference is nonpositive.
lemma (in int0) Int_ZF_1_3_L10:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a\leq b \longleftrightarrow a - b \leq 0 \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L9Some conclusions from the fact that one integer is less or equal than another.
lemma (in int0) Int_ZF_1_3_L10A:
assumes \( a\leq b \)
shows \( 0 \leq b - a \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L12AWe can simplify out a positive element on both sides of an inequality.
lemma (in int0) Int_ineq_simpl_positive:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \) and A2: \( a\cdot c \leq b\cdot c \) and A4: \( \neg (c\leq 0 ) \)
shows \( a \leq b \)proofA technical lemma about conclusion from an inequality between absolute values. This is a property of ordered rings.
lemma (in int0) Int_ZF_1_3_L11:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and A2: \( \neg (abs(a) \leq abs(b)) \)
shows \( \neg (abs(a) \leq 0 ) \)proofNegative times positive is negative. This a property of ordered rings.
lemma (in int0) Int_ZF_1_3_L12:
assumes \( a\leq 0 \) and \( 0 \leq b \)
shows \( a\cdot b \leq 0 \) using assms, Int_ZF_1_3_T1, OrdRing_ZF_1_L8We can multiply an inequality by a nonnegative number. This is a property of ordered rings.
lemma (in int0) Int_ZF_1_3_L13:
assumes A1: \( a\leq b \) and A2: \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \) using assms, Int_ZF_1_3_T1, OrdRing_ZF_1_L9A technical lemma about decreasing a factor in an inequality.
lemma (in int0) Int_ZF_1_3_L13A:
assumes \( 1 \leq a \) and \( b\leq c \) and \( (a + 1 )\cdot c \leq d \)
shows \( (a + 1 )\cdot b \leq d \)proofWe can multiply an inequality by a positive number. This is a property of ordered rings.
lemma (in int0) Int_ZF_1_3_L13B:
assumes A1: \( a\leq b \) and A2: \( c\in \mathbb{Z} _+ \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)proofA rearrangement with four integers and absolute value.
lemma (in int0) Int_ZF_1_3_L14:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( abs(a\cdot b) + (abs(a) + c)\cdot d = (d + abs(b))\cdot abs(a) + c\cdot d \)proofA technical lemma about what happens when one absolute value is not greater or equal than another.
lemma (in int0) Int_ZF_1_3_L15:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and A2: \( \neg (abs(m) \leq abs(n)) \)
shows \( n \leq abs(m) \), \( m\neq 0 \)proofNegative of a nonnegative is nonpositive.
lemma (in int0) Int_ZF_1_3_L16:
assumes A1: \( 0 \leq m \)
shows \( ( - m) \leq 0 \)proofSome statements about intervals centered at \(0\).
lemma (in int0) Int_ZF_1_3_L17:
assumes A1: \( m\in \mathbb{Z} \)
shows \( ( - abs(m)) \leq abs(m) \), \( ( - abs(m)).\ .\ abs(m) \neq 0 \)proofThe greater of two integers is indeed greater than both, and the smaller one is smaller that both.
lemma (in int0) Int_ZF_1_3_L18:
assumes A1: \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m \leq \text{GreaterOf}(IntegerOrder,m,n) \), \( n \leq \text{GreaterOf}(IntegerOrder,m,n) \), \( \text{SmallerOf}(IntegerOrder,m,n) \leq m \), \( \text{SmallerOf}(IntegerOrder,m,n) \leq n \) using assms, Int_ZF_2_T1, Order_ZF_3_L2If \(|m| \leq n\), then \(m \in -n..n\).
lemma (in int0) Int_ZF_1_3_L19:
assumes A1: \( m\in \mathbb{Z} \) and A2: \( abs(m) \leq n \)
shows \( ( - n) \leq m \), \( m \leq n \), \( m \in ( - n).\ .\ n \), \( 0 \leq n \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L8, OrderedGroup_ZF_3_L8A, Order_ZF_2_L1A slight generalization of the above lemma.
lemma (in int0) Int_ZF_1_3_L19A:
assumes A1: \( m\in \mathbb{Z} \) and A2: \( abs(m) \leq n \) and A3: \( 0 \leq k \)
shows \( ( - (n + k)) \leq m \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L8BSets of integers that have absolute value bounded are bounded.
lemma (in int0) Int_ZF_1_3_L20:
assumes A1: \( \forall x\in X.\ b(x) \in \mathbb{Z} \wedge abs(b(x)) \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},IntegerOrder) \)proofIf a set is bounded, then the absolute values of the elements of that set are bounded.
lemma (in int0) Int_ZF_1_3_L20A:
assumes \( \text{IsBounded}(A,IntegerOrder) \)
shows \( \exists L.\ \forall a\in A.\ abs(a) \leq L \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L10AAbsolute vaues of integers from a finite image of integers are bounded by an integer.
lemma (in int0) Int_ZF_1_3_L20AA:
assumes A1: \( \{b(x).\ x\in \mathbb{Z} \} \in Fin(\mathbb{Z} ) \)
shows \( \exists L\in \mathbb{Z} .\ \forall x\in \mathbb{Z} .\ abs(b(x)) \leq L \) using assms, int_not_empty, Int_ZF_2_T1, OrderedGroup_ZF_3_L11AIf absolute values of values of some integer function are bounded, then the image a set from the domain is a bounded set.
lemma (in int0) Int_ZF_1_3_L20B:
assumes \( f:X\rightarrow \mathbb{Z} \) and \( A\subseteq X \) and \( \forall x\in A.\ abs(f(x)) \leq L \)
shows \( \text{IsBounded}(f(A),IntegerOrder) \)proofA special case of the previous lemma for a function from integers to integers.
corollary (in int0) Int_ZF_1_3_L20C:
assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall m\in \mathbb{Z} .\ abs(f(m)) \leq L \)
shows \( f(\mathbb{Z} ) \in Fin(\mathbb{Z} ) \)proofA triangle inequality with three integers. Property of linearly ordered abelian groups.
lemma (in int0) int_triangle_ineq3:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( abs(a - b - c) \leq abs(a) + abs(b) + abs(c) \)proofIf \(a\leq c\) and \(b\leq c\), then \(a+b\leq 2\cdot c\). Property of ordered rings.
lemma (in int0) Int_ZF_1_3_L21:
assumes A1: \( a\leq c \), \( b\leq c \)
shows \( a + b \leq 2 \cdot c \) using assms, Int_ZF_1_3_T1, OrdRing_ZF_2_L6If an integer \(a\) is between \(b\) and \(b+c\), then \(|b-a| \leq c\). Property of ordered groups.
lemma (in int0) Int_ZF_1_3_L22:
assumes \( a\leq b \) and \( c\in \mathbb{Z} \) and \( b\leq c + a \)
shows \( abs(b - a) \leq c \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L8CAn application of the triangle inequality with four integers. Property of linearly ordered abelian groups.
lemma (in int0) Int_ZF_1_3_L22A:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \), \( d\in \mathbb{Z} \)
shows \( abs(a - c) \leq abs(a + b) + abs(c + d) + abs(b - d) \) using assms, Int_ZF_1_T2, Int_ZF_2_T1, OrderedGroup_ZF_3_L7FIf an integer \(a\) is between \(b\) and \(b+c\), then \(|b-a| \leq c\). Property of ordered groups. A version of Int_ZF_1_3_L22 with sligtly different assumptions.
lemma (in int0) Int_ZF_1_3_L23:
assumes A1: \( a\leq b \) and A2: \( c\in \mathbb{Z} \) and A3: \( b\leq a + c \)
shows \( abs(b - a) \leq c \)proofIn this section we provide some sufficient conditions for integer subsets to have extrema (maxima and minima).
Finite nonempty subsets of integers attain maxima and minima.
theorem (in int0) Int_fin_have_max_min:
assumes A1: \( A \in Fin(\mathbb{Z} ) \) and A2: \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,A) \in \mathbb{Z} \)proofBounded nonempty integer subsets attain maximum and minimum.
theorem (in int0) Int_bounded_have_max_min:
assumes \( \text{IsBounded}(A,IntegerOrder) \) and \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,A) \in \mathbb{Z} \) using assms, Int_fin_have_max_min, Int_bounded_iff_finNonempty set of integers that is bounded below attains its minimum.
theorem (in int0) int_bounded_below_has_min:
assumes A1: \( \text{IsBoundedBelow}(A,IntegerOrder) \) and A2: \( A\neq 0 \)
shows \( \) \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \)proofNonempty set of integers that is bounded above attains its maximum.
theorem (in int0) int_bounded_above_has_max:
assumes A1: \( \text{IsBoundedAbove}(A,IntegerOrder) \) and A2: \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \)proofA set defined by separation over a bounded set attains its maximum and minimum.
lemma (in int0) Int_ZF_1_4_L1:
assumes A1: \( \text{IsBounded}(A,IntegerOrder) \) and A2: \( A\neq 0 \) and A3: \( \forall q\in \mathbb{Z} .\ F(q) \in \mathbb{Z} \) and A4: \( K = \{F(q).\ q \in A\} \)
shows \( \text{HasAmaximum}(IntegerOrder,K) \), \( \text{HasAminimum}(IntegerOrder,K) \), \( \text{Maximum}(IntegerOrder,K) \in K \), \( \text{Minimum}(IntegerOrder,K) \in K \), \( \text{Maximum}(IntegerOrder,K) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,K) \in \mathbb{Z} \), \( \forall q\in A.\ F(q) \leq \text{Maximum}(IntegerOrder,K) \), \( \forall q\in A.\ \text{Minimum}(IntegerOrder,K) \leq F(q) \), \( \text{IsBounded}(K,IntegerOrder) \)proofA three element set has a maximume and minimum.
lemma (in int0) Int_ZF_1_4_L1A:
assumes A1: \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( \text{Maximum}(IntegerOrder,\{a,b,c\}) \in \mathbb{Z} \), \( a \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \), \( b \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \), \( c \leq \text{Maximum}(IntegerOrder,\{a,b,c\}) \) using assms, Int_ZF_2_T1, Finite_ZF_1_L2AInteger functions attain maxima and minima over intervals.
lemma (in int0) Int_ZF_1_4_L2:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( a\leq b \)
shows \( maxf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ f(c) \leq maxf(f,a.\ .\ b) \), \( \exists c \in a.\ .\ b.\ f(c) = maxf(f,a.\ .\ b) \), \( minf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ minf(f,a.\ .\ b) \leq f(c) \), \( \exists c \in a.\ .\ b.\ f(c) = minf(f,a.\ .\ b) \)proofThe set of nonnegative integers looks like the set of natural numbers. We explore that in this section. We also rephrase some lemmas about the set of positive integers known from the theory of ordered groups.
The set of positive integers is closed under addition.
lemma (in int0) pos_int_closed_add:
shows \( \mathbb{Z} _+ \text{ is closed under } IntegerAddition \) using Int_ZF_2_T1, OrderedGroup_ZF_1_L13Text expended version of the fact that the set of positive integers is closed under addition
lemma (in int0) pos_int_closed_add_unfolded:
assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a + b \in \mathbb{Z} _+ \) using assms, pos_int_closed_add, IsOpClosed_def\( \mathbb{Z} ^+ \) is bounded below.
lemma (in int0) Int_ZF_1_5_L1:
shows \( \text{IsBoundedBelow}(\mathbb{Z} ^+,IntegerOrder) \), \( \text{IsBoundedBelow}(\mathbb{Z} _+,IntegerOrder) \) using Nonnegative_def, PositiveSet_def, IsBoundedBelow_defSubsets of \( \mathbb{Z} ^+ \) are bounded below.
lemma (in int0) Int_ZF_1_5_L1A:
assumes \( A \subseteq \mathbb{Z} ^+ \)
shows \( \text{IsBoundedBelow}(A,IntegerOrder) \) using assms, Int_ZF_1_5_L1, Order_ZF_3_L12Subsets of \( \mathbb{Z} _+ \) are bounded below.
lemma (in int0) Int_ZF_1_5_L1B:
assumes A1: \( A \subseteq \mathbb{Z} _+ \)
shows \( \text{IsBoundedBelow}(A,IntegerOrder) \) using A1, Int_ZF_1_5_L1, Order_ZF_3_L12Every nonempty subset of positive integers has a mimimum.
lemma (in int0) Int_ZF_1_5_L1C:
assumes \( A \subseteq \mathbb{Z} _+ \) and \( A \neq 0 \)
shows \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \) using assms, Int_ZF_1_5_L1B, int_bounded_below_has_minInfinite subsets of \(Z^+\) do not have a maximum - If \(A\subseteq Z^+\) then for every integer we can find one in the set that is not smaller.
lemma (in int0) Int_ZF_1_5_L2:
assumes A1: \( A \subseteq \mathbb{Z} ^+ \) and A2: \( A \notin Fin(\mathbb{Z} ) \) and A3: \( D\in \mathbb{Z} \)
shows \( \exists n\in A.\ D\leq n \)proofInfinite subsets of \(Z_+\) do not have a maximum - If \(A\subseteq Z_+\) then for every integer we can find one in the set that is not smaller. This is very similar to Int_ZF_1_5_L2, except we have \( \mathbb{Z} _+ \) instead of \( \mathbb{Z} ^+ \) here.
lemma (in int0) Int_ZF_1_5_L2A:
assumes A1: \( A \subseteq \mathbb{Z} _+ \) and A2: \( A \notin Fin(\mathbb{Z} ) \) and A3: \( D\in \mathbb{Z} \)
shows \( \exists n\in A.\ D\leq n \)proofAn integer is either positive, zero, or its opposite is postitive.
lemma (in int0) Int_decomp:
assumes \( m\in \mathbb{Z} \)
shows \( \text{Exactly_1_of_3_holds} (m= 0 ,m\in \mathbb{Z} _+,( - m)\in \mathbb{Z} _+) \) using assms, Int_ZF_2_T1, OrdGroup_decompAn integer is zero, positive, or it's inverse is positive.
lemma (in int0) int_decomp_cases:
assumes \( m\in \mathbb{Z} \)
shows \( m= 0 \vee m\in \mathbb{Z} _+ \vee ( - m) \in \mathbb{Z} _+ \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L14An integer is in the positive set iff it is greater or equal one.
lemma (in int0) Int_ZF_1_5_L3:
shows \( m\in \mathbb{Z} _+ \longleftrightarrow 1 \leq m \)proofThe set of positive integers is closed under multiplication. The unfolded form.
lemma (in int0) pos_int_closed_mul_unfold:
assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a\cdot b \in \mathbb{Z} _+ \) using assms, Int_ZF_1_5_L3, Int_ZF_1_3_L3The set of positive integers is closed under multiplication.
lemma (in int0) pos_int_closed_mul:
shows \( \mathbb{Z} _+ \text{ is closed under } IntegerMultiplication \) using pos_int_closed_mul_unfold, IsOpClosed_defIt is an overkill to prove that the ring of integers has no zero divisors this way, but why not?
lemma (in int0) int_has_no_zero_divs:
shows \( \text{HasNoZeroDivs}(\mathbb{Z} ,IntegerAddition,IntegerMultiplication) \) using pos_int_closed_mul, Int_ZF_1_3_T1, OrdRing_ZF_3_L3Nonnegative integers are positive ones plus zero.
lemma (in int0) Int_ZF_1_5_L3A:
shows \( \mathbb{Z} ^+ = \mathbb{Z} _+ \cup \{ 0 \} \) using Int_ZF_2_T1, OrderedGroup_ZF_1_L24We can make a function smaller than any constant on a given interval of positive integers by adding another constant.
lemma (in int0) Int_ZF_1_5_L4:
assumes A1: \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( K\in \mathbb{Z} \), \( N\in \mathbb{Z} \)
shows \( \exists C\in \mathbb{Z} .\ \forall n\in \mathbb{Z} _+.\ K \leq f(n) + C \longrightarrow N\leq n \)proofAbsolute value is identity on positive integers.
lemma (in int0) Int_ZF_1_5_L4A:
assumes \( a\in \mathbb{Z} _+ \)
shows \( abs(a) = a \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_3_L2BOne and two are in \( \mathbb{Z} _+ \).
lemma (in int0) int_one_two_are_pos:
shows \( 1 \in \mathbb{Z} _+ \), \( 2 \in \mathbb{Z} _+ \) using int_zero_one_are_int, int_ord_is_refl, refl_def, Int_ZF_1_5_L3, Int_ZF_2_L16BThe image of \( \mathbb{Z} _+ \) by a function defined on integers is not empty.
lemma (in int0) Int_ZF_1_5_L5:
assumes A1: \( f : \mathbb{Z} \rightarrow X \)
shows \( f(\mathbb{Z} _+) \neq 0 \)proofIf \(n\) is positive, then \(n-1\) is nonnegative.
lemma (in int0) Int_ZF_1_5_L6:
assumes A1: \( n \in \mathbb{Z} _+ \)
shows \( 0 \leq n - 1 \), \( 0 \in 0 .\ .\ (n - 1 ) \), \( 0 .\ .\ (n - 1 ) \subseteq \mathbb{Z} \)proofIntgers greater than one in \( \mathbb{Z} _+ \) belong to \( \mathbb{Z} _+ \). This is a property of ordered groups and follows from OrderedGroup_ZF_1_L19, but Isabelle's simplifier has problems using that result directly, so we reprove it specifically for integers.
lemma (in int0) Int_ZF_1_5_L7:
assumes \( a \in \mathbb{Z} _+ \) and \( a\leq b \)
shows \( b \in \mathbb{Z} _+ \)proofAdding a positive integer increases integers.
lemma (in int0) Int_ZF_1_5_L7A:
assumes \( a\in \mathbb{Z} \), \( b \in \mathbb{Z} _+ \)
shows \( a \leq a + b \), \( a \neq a + b \), \( a + b \in \mathbb{Z} \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L22For any integer \(m\) the greater of \(m\) and \(1\) is a positive integer that is greater or equal than \(m\). If we add \(1\) to it we get a positive integer that is strictly greater than \(m\).
lemma (in int0) Int_ZF_1_5_L7B:
assumes \( a\in \mathbb{Z} \)
shows \( a \leq \text{GreaterOf}(IntegerOrder,1 ,a) \), \( \text{GreaterOf}(IntegerOrder,1 ,a) \in \mathbb{Z} _+ \), \( \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \in \mathbb{Z} _+ \), \( a \leq \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \), \( a \neq \text{GreaterOf}(IntegerOrder,1 ,a) + 1 \) using assms, int_zero_not_one, Int_ZF_1_3_T1, OrdRing_ZF_3_L12The opposite of an element of \( \mathbb{Z} _+ \) cannot belong to \( \mathbb{Z} _+ \).
lemma (in int0) Int_ZF_1_5_L8:
assumes \( a \in \mathbb{Z} _+ \)
shows \( ( - a) \notin \mathbb{Z} _+ \) using assms, Int_ZF_2_T1, OrderedGroup_ZF_1_L20For every integer there is one in \( \mathbb{Z} _+ \) that is greater or equal.
lemma (in int0) Int_ZF_1_5_L9:
assumes \( a\in \mathbb{Z} \)
shows \( \exists b\in \mathbb{Z} _+.\ a\leq b \) using assms, int_not_trivial, Int_ZF_2_T1, OrderedGroup_ZF_1_L23A theorem about odd extensions. Recall from OrdereGroup_ZF.thy that the odd extension of an integer function \(f\) defined on \( \mathbb{Z} _+ \) is the odd function on \( \mathbb{Z} \) equal to \(f\) on \( \mathbb{Z} _+ \). First we show that the odd extension is defined on \( \mathbb{Z} \).
lemma (in int0) Int_ZF_1_5_L10:
assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \)
shows \( \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) : \mathbb{Z} \rightarrow \mathbb{Z} \) using assms, Int_ZF_2_T1, odd_ext_propsOn \( \mathbb{Z} _+ \), the odd extension of \(f\) is the same as \(f\).
lemma (in int0) Int_ZF_1_5_L11:
assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a \in \mathbb{Z} _+ \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( g(a) = f(a) \) using assms, Int_ZF_2_T1, odd_ext_propsOn \( -\mathbb{Z} _+ \), the value of the odd extension of \(f\) is the negative of \(f(-a)\).
lemma (in int0) Int_ZF_1_5_L12:
assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a \in (-\mathbb{Z} _+) \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( g(a) = - (f( - a)) \) using assms, Int_ZF_2_T1, odd_ext_propsOdd extensions are odd on \( \mathbb{Z} \).
lemma (in int0) int_oddext_is_odd:
assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a\in \mathbb{Z} \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( g( - a) = - (g(a)) \) using assms, Int_ZF_2_T1, oddext_is_oddAlternative definition of an odd function.
lemma (in int0) Int_ZF_1_5_L13:
assumes A1: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( (\forall a\in \mathbb{Z} .\ f( - a) = ( - f(a))) \longleftrightarrow (\forall a\in \mathbb{Z} .\ ( - (f( - a))) = f(a)) \) using assms, Int_ZF_1_T2, group0_6_L2Another way of expressing the fact that odd extensions are odd.
lemma (in int0) int_oddext_is_odd_alt:
assumes \( f : \mathbb{Z} _+\rightarrow \mathbb{Z} \) and \( a\in \mathbb{Z} \) and \( g = \text{OddExtension}(\mathbb{Z} ,IntegerAddition,IntegerOrder,f) \)
shows \( ( - g( - a)) = g(a) \) using assms, Int_ZF_2_T1, oddext_is_odd_altIn this section we consider functions (integer sequences) that have infinite limits. An integer function has infinite positive limit if it is arbitrarily large for large enough arguments. Similarly, a function has infinite negative limit if it is arbitrarily small for small enough arguments. The material in this come mostly from the section in OrderedGroup_ZF.thy with he same title. Here we rewrite the theorems from that section in the notation we use for integers and add some results specific for the ordered group of integers.
If an image of a set by a function with infinite positive limit is bounded above, then the set itself is bounded above.
lemma (in int0) Int_ZF_1_6_L1:
assumes \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and \( A \subseteq \mathbb{Z} \) and \( \text{IsBoundedAbove}(f(A),IntegerOrder) \)
shows \( \text{IsBoundedAbove}(A,IntegerOrder) \) using assms, int_not_trivial, Int_ZF_2_T1, OrderedGroup_ZF_7_L1If an image of a set defined by separation by a function with infinite positive limit is bounded above, then the set itself is bounded above.
lemma (in int0) Int_ZF_1_6_L2:
assumes A1: \( X\neq 0 \) and A2: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A3: \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and A4: \( \forall x\in X.\ b(x) \in \mathbb{Z} \wedge f(b(x)) \leq U \)
shows \( \exists u.\ \forall x\in X.\ b(x) \leq u \)proofIf an image of a set defined by separation by a integer function with infinite negative limit is bounded below, then the set itself is bounded above. This is dual to Int_ZF_1_6_L2.
lemma (in int0) Int_ZF_1_6_L3:
assumes A1: \( X\neq 0 \) and A2: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A3: \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall y.\ b\leq y \longrightarrow f( - y) \leq a \) and A4: \( \forall x\in X.\ b(x) \in \mathbb{Z} \wedge L \leq f(b(x)) \)
shows \( \exists l.\ \forall x\in X.\ l \leq b(x) \)proofThe next lemma combines Int_ZF_1_6_L2 and Int_ZF_1_6_L3 to show that if the image of a set defined by separation by a function with infinite limits is bounded, then the set itself is bounded. The proof again uses directly a fact from OrderedGroup_ZF.
lemma (in int0) Int_ZF_1_6_L4:
assumes A1: \( X\neq 0 \) and A2: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A3: \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and A4: \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall y.\ b\leq y \longrightarrow f( - y) \leq a \) and A5: \( \forall x\in X.\ b(x) \in \mathbb{Z} \wedge f(b(x)) \leq U \wedge L \leq f(b(x)) \)
shows \( \exists M.\ \forall x\in X.\ abs(b(x)) \leq M \)proofIf a function is larger than some constant for arguments large enough, then the image of a set that is bounded below is bounded below. This is not true for ordered groups in general, but only for those for which bounded sets are finite. This does not require the function to have infinite limit, but such functions do have this property.
lemma (in int0) Int_ZF_1_6_L5:
assumes A1: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( N\in \mathbb{Z} \) and A3: \( \forall m.\ N\leq m \longrightarrow L \leq f(m) \) and A4: \( \text{IsBoundedBelow}(A,IntegerOrder) \)
shows \( \text{IsBoundedBelow}(f(A),IntegerOrder) \)proofA function that has an infinite limit can be made arbitrarily large on positive integers by adding a constant. This does not actually require the function to have infinite limit, just to be larger than a constant for arguments large enough.
lemma (in int0) Int_ZF_1_6_L6:
assumes A1: \( N\in \mathbb{Z} \) and A2: \( \forall m.\ N\leq m \longrightarrow L \leq f(m) \) and A3: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A4: \( K\in \mathbb{Z} \)
shows \( \exists c\in \mathbb{Z} .\ \forall n\in \mathbb{Z} _+.\ K \leq f(n) + c \)proofIf a function has infinite limit, then we can add such constant such that minimum of those arguments for which the function (plus the constant) is larger than another given constant is greater than a third constant. It is not as complicated as it sounds.
lemma (in int0) Int_ZF_1_6_L7:
assumes A1: \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and A2: \( K\in \mathbb{Z} \), \( N\in \mathbb{Z} \) and A3: \( \forall a\in \mathbb{Z} .\ \exists b\in \mathbb{Z} _+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \)
shows \( \exists C\in \mathbb{Z} .\ N \leq \text{Minimum}(IntegerOrder,\{n\in \mathbb{Z} _+.\ K \leq f(n) + C\}) \)proofFor any integer \(m\) the function \(k\mapsto m\cdot k\) has an infinite limit (or negative of that). This is why we put some properties of these functions here, even though they properly belong to a (yet nonexistent) section on homomorphisms. The next lemma shows that the set \(\{a\cdot x: x\in Z\}\) can finite only if \(a=0\).
lemma (in int0) Int_ZF_1_6_L8:
assumes A1: \( a\in \mathbb{Z} \) and A2: \( \{a\cdot x.\ x\in \mathbb{Z} \} \in Fin(\mathbb{Z} ) \)
shows \( a = 0 \)proofIn this section we put some technical lemmas needed in various other places that are hard to classify.
Suppose we have an integer expression (a meta-function)\(F\) such that \(F(p)|p|\) is bounded by a linear function of \(|p|\), that is for some integers \(A,B\) we have \(F(p)|p|\leq A|p|+B.\) We show that \(F\) is then bounded. The proof is easy, we just divide both sides by \(|p|\) and take the limit (just kidding).
lemma (in int0) Int_ZF_1_7_L1:
assumes A1: \( \forall q\in \mathbb{Z} .\ F(q) \in \mathbb{Z} \) and A2: \( \forall q\in \mathbb{Z} .\ F(q)\cdot abs(q) \leq A\cdot abs(q) + B \) and A3: \( A\in \mathbb{Z} \), \( B\in \mathbb{Z} \)
shows \( \exists L.\ \forall p\in \mathbb{Z} .\ F(p) \leq L \)proofA lemma about splitting (not really, there is some overlap) the \( \mathbb{Z} \times \mathbb{Z} \) into six subsets (cases). The subsets are as follows: first and third qaudrant, and second and fourth quadrant farther split by the \(b =-a\) line.
lemma (in int0) int_plane_split_in6:
assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( 0 \leq a \wedge 0 \leq b \vee a\leq 0 \wedge b\leq 0 \vee \) \( a\leq 0 \wedge 0 \leq b \wedge 0 \leq a + b \vee a\leq 0 \wedge 0 \leq b \wedge a + b \leq 0 \vee \) \( 0 \leq a \wedge b\leq 0 \wedge 0 \leq a + b \vee 0 \leq a \wedge b\leq 0 \wedge a + b \leq 0 \) using assms, Int_ZF_2_T1, OrdGroup_6casesassumes \( a \in \mathbb{Z} \), \( b \in \mathbb{Z} \)
shows \( a + b = a \ \$\!+\ b \), \( a\cdot b = a \ \$\!*\ b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a\cdot (b + c) = a\cdot b + a\cdot c \), \( (b + c)\cdot a = b\cdot a + c\cdot a \)assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \)
shows \( x + y = y + x \), \( x\cdot y = y\cdot x \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( x\in R \)
shows \( 0 \cdot x = 0 \), \( x\cdot 0 = 0 \)assumes \( a\in R \), \( b\in R \)
shows \( a + b \in R \), \( a - b \in R \), \( a\cdot b \in R \), \( a + b = b + a \)assumes \( a\in R \), \( b\in R \)
shows \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( a - ( - b) = a + b \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot b = a\cdot ( - b) \)assumes \( a\in R \), \( b\in R \)
shows \( ( - a)\cdot ( - b) = a\cdot b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b \in \mathbb{Z} \), \( a - b \in \mathbb{Z} \), \( a\cdot b \in \mathbb{Z} \), \( a + b = b + a \), \( a\cdot b = b\cdot a \), \( ( - b) - a = ( - a) - b \), \( ( - (a + b)) = ( - a) - b \), \( ( - (a - b)) = (( - a) + b) \), \( ( - a)\cdot b = - (a\cdot b) \), \( a\cdot ( - b) = - (a\cdot b) \), \( ( - a)\cdot ( - b) = a\cdot b \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + (b + c) = a + b + c \), \( a - (b + c) = a - b - c \), \( a - (b - c) = a - b + c \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + (b - c) = a + b - c \)assumes \( a\in R \), \( b\in R \), \( c\in R \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \)assumes \( 0 \leq m \)
shows \( m\in \mathbb{Z} ^+ \) and \( abs(m) = m \)assumes \( j\leq k \)
shows \( j \leq k \ \$\!+\ \$\!\#\!1 \), \( j \leq k + 1 \)assumes \( m \leq n \)
shows \( m \ \$\!\leq\ n \), \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)assumes \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} \)assumes \( 0 \leq a \)
shows \( abs(a) + 1 = abs(a + 1 ) \)assumes \( a\in R \), \( b\in R \)
shows \( a + b\cdot a = (b + 1 )\cdot a \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b\cdot a^{-1} = b \), \( a^{-1}\cdot b\cdot a = b \), \( a^{-1}\cdot (b\cdot a) = b \), \( a\cdot (b\cdot a^{-1}) = b \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot b = a \), \( a\cdot b\cdot b^{-1} = a \), \( a^{-1}\cdot (a\cdot b) = b \), \( a\cdot (a^{-1}\cdot b) = b \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot (b\cdot a)^{-1} = b^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot a^{-1} = b^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot (a\cdot b)^{-1} = b^{-1} \), \( a\cdot (b\cdot a^{-1}) = b \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b^{-1}\cdot (a\cdot b)^{-1} = b^{-1}\cdot b^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot (a\cdot b^{-1})^{-1} = b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + b - a = b \), \( a + (b - a) = b \), \( a + b - b = a \), \( a - b + b = a \), \( ( - a) + (a + b) = b \), \( a + (b - a) = b \), \( ( - b) + (a + b) = a \), \( a - (b + a) = - b \), \( a - (a + b) = - b \), \( a - (a - b) = b \), \( a - b - a = - b \), \( a - b - (a + b) = ( - b) - b \)assumes \( a \in \mathbb{Z} \)
shows \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( 0 \cdot a = 0 \), \( a\cdot 0 = 0 \), \( ( - a) \in \mathbb{Z} \), \( ( - ( - a)) = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \)assumes \( k \in \mathbb{Z} \) and \( m \leq n \)
shows \( m + k \leq n + k \), \( k + m\leq k + n \)assumes \( a\leq b \)
shows \( a - 1 \leq b \)assumes \( m\in \mathbb{Z} \)
shows \( m + 1 \neq m \), \( m - 1 \neq m \), \( m - 0 = m \)assumes \( m\leq n \) and \( m\neq n \)
shows \( \neg (n\leq m) \)assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \), \( k\in \mathbb{Z} \)
shows \( i + m \leq k \longleftrightarrow i \leq k - m \)assumes \( a\leq 1 \)
shows \( \vert a\vert = a^{-1} \)assumes \( a\leq 0 \)
shows \( abs(a) + 1 = abs(a - 1 ) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a - (b + c) = a - b - c \), \( a - (b - c) = a - b + c \), \( a\cdot (b - c) = a\cdot b - a\cdot c \), \( (b - c)\cdot a = b\cdot a - c\cdot a \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot (b\cdot c)^{-1} = (a\cdot d^{-1}\cdot c^{-1})\cdot (d\cdot b^{-1}) \), \( a\cdot b\cdot (c\cdot d) = c\cdot a\cdot (b\cdot d) \), \( a\cdot b\cdot (c\cdot d) = a\cdot c\cdot (b\cdot d) \), \( a\cdot (b\cdot c^{-1})\cdot d = a\cdot b\cdot d\cdot c^{-1} \), \( (a\cdot b)\cdot (c\cdot d)^{-1}\cdot (b\cdot d^{-1})^{-1} = a\cdot c^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b^{-1}\cdot (b\cdot c^{-1}) = a\cdot c^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b^{-1}\cdot (a\cdot c^{-1})^{-1} = c\cdot b^{-1} \), \( (a\cdot c)^{-1}\cdot (b\cdot c) = a^{-1}\cdot b \), \( a\cdot (b\cdot (c\cdot a^{-1}\cdot b^{-1})) = c \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot a^{-1}) = b \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a^{-1}\cdot b^{-1}\cdot c = c\cdot a^{-1}\cdot b^{-1} \), \( b^{-1}\cdot a^{-1}\cdot c = c\cdot a^{-1}\cdot b^{-1} \), \( (a^{-1}\cdot b\cdot c)^{-1} = a\cdot b^{-1}\cdot c^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot c\cdot a^{-1} = b\cdot c \), \( a^{-1}\cdot b\cdot c\cdot a = b\cdot c \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot (a\cdot c)^{-1} = b\cdot c^{-1} \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a - ( - b) = a + b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a + 1 + (b + 1 ) = b + a + 2 \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( abs(m) \leq k \), \( abs(n) \leq l \)
shows \( abs(m + n) \leq k + l \), \( abs(m - n) \leq k + l \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( (a - b) + (b - c) = a - c \), \( (a - b) - (a - c) = c - b \), \( a + (b + (c - a - b)) = c \), \( ( - a) - b + c = c - a - b \), \( ( - b) - a + c = c - a - b \), \( ( - (( - a) + b + c)) = a - b - c \), \( a + b + c - a = b + c \), \( a + b - (a + c) = b - c \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot c = c\cdot a\cdot b \), \( a\cdot b\cdot c = a\cdot (c\cdot b) \), \( a\cdot b\cdot c = c\cdot (a\cdot b) \), \( a\cdot b\cdot c = c\cdot b\cdot a \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \)
shows \( a + b + c = a + (b + c) \), \( a\cdot b\cdot c = a\cdot (b\cdot c) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a\cdot b = (a - 1 )\cdot b + b \), \( a\cdot (b + 1 ) = a\cdot b + a \), \( (b + 1 )\cdot a = b\cdot a + a \), \( (b + 1 )\cdot a = a + b\cdot a \)assumes \( a\in R \), \( b\in R \), \( c\in R \), \( d\in R \), \( x\in R \)
shows \( (a\cdot x + b) + (c\cdot x + d) = (a + c)\cdot x + (b + d) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \) and \( a = b\cdot c^{-1}\cdot d^{-1} \)
shows \( d = b\cdot a^{-1}\cdot c^{-1} \), \( d = a^{-1}\cdot b\cdot c^{-1} \), \( b = a\cdot d\cdot c \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot c^{-1}= (a\cdot b^{-1})\cdot (b\cdot c^{-1}) \), \( a^{-1}\cdot c = (a^{-1}\cdot b)\cdot (b^{-1}\cdot c) \), \( a\cdot (b\cdot c)^{-1} = a\cdot c^{-1}\cdot b^{-1} \), \( a\cdot (b\cdot c^{-1}) = a\cdot b\cdot c^{-1} \), \( (a\cdot b^{-1}\cdot c^{-1})^{-1} = c\cdot b\cdot a^{-1} \), \( a\cdot b\cdot c^{-1}\cdot (c\cdot b^{-1}) = a \), \( a\cdot (b\cdot c)\cdot c^{-1} = a\cdot b \)assumes \( a\leq b \) and \( c\leq d \)
shows \( a + c \leq b + d \), \( a - d \leq b - c \)assumes \( 0 \leq a \), \( 0 \leq b \) and \( 0 \leq a\cdot b \)
shows \( 0 \leq a\cdot (b + 1 ) \)assumes \( i\leq k \) and \( Q(i) \) and \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( Q(k) \)assumes \( 0 \leq a \), \( 0 \leq b \)
shows \( 0 \leq a\cdot b \)assumes \( \text{IsAring}(R,A,M) \), \( M \text{ is commutative on } R \), \( \text{Nonnegative}(R,A,r) \text{ is closed under } M \), \( \text{IsAnOrdGroup}(R,A,r) \), \( r \text{ is total on } R \)
shows \( \text{IsAnOrdRing}(R,A,M,r) \)assumes \( \text{IsAnOrdRing}(R,A,M,r) \)
shows \( ring1(R,A,M,r) \)assumes \( m\leq n \), \( n\leq k \)
shows \( m\leq k \)assumes \( 1 \leq a \), \( 1 \leq b \) and \( 1 \leq a\cdot b \)
shows \( 1 \leq a\cdot (b + 1 ) \)assumes \( m\in \mathbb{Z} \)
shows \( abs( - m) = abs(m) \)assumes \( a\in R \), \( b\in R \)
shows \( \vert a\cdot b\vert = \vert a\vert \cdot \vert b\vert \)assumes \( 0 \leq a \)
shows \( 0 \leq 2 \cdot a \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( \neg (n\leq m) \)
shows \( m\leq n \), \( ( - n) \leq ( - m) \), \( m\neq n \)assumes \( m \leq L \)
shows \( m = L \vee m + 1 \leq L \), \( m = L \vee m \leq L - 1 \)assumes \( m\in \mathbb{Z} \)
shows \( m \leq m + 1 \)assumes \( m \leq n \), \( n \leq m \)
shows \( m=n \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( \neg (b\leq a) \longleftrightarrow a + 1 \leq b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( b\leq a \vee a + 1 \leq b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and \( \neg (b\leq a) \)
shows \( a \leq b - 1 \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( a=b \vee (a\leq b \wedge a\neq b) \vee (b\leq a \wedge b\neq a) \)assumes \( a\leq b \) and \( a\neq b \)
shows \( a + 1 \leq b \), \( a \leq b - 1 \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a=b \vee (a \leq b - 1 ) \vee (b + 1 \leq a) \)assumes \( a\in \mathbb{Z} \)
shows \( \neg (a\leq 0 ) \longleftrightarrow 1 \leq a \)assumes \( 1 \leq a \), \( 1 \leq b \)
shows \( 1 \leq a\cdot b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and \( \neg (a\leq 0 ) \), \( \neg (b\leq 0 ) \)
shows \( \neg ((a\cdot b) \leq 0 ) \)assumes \( a\in G \), \( b\in G \)
shows \( a\leq b \longleftrightarrow a\cdot b^{-1} \leq 1 \)assumes \( a\leq b \)
shows \( 1 \leq b\cdot a^{-1} \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( a\leq b \longleftrightarrow a - b \leq 0 \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and \( \neg (b\leq 0 ) \) and \( a\cdot b \leq 0 \)
shows \( a\leq 0 \)assumes \( m\in \mathbb{Z} \)
shows \( abs(m) \in \mathbb{Z} ^+ \), \( 0 \leq abs(m) \)assumes \( a\leq 0 \) and \( 0 \leq b \)
shows \( a\cdot b \leq 0 \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( 1 \leq a \)
shows \( 0 \leq a \), \( a\neq 0 \), \( 2 \leq a + 1 \), \( 1 \leq a + 1 \), \( 0 \leq a + 1 \)assumes \( a\leq b \) and \( 0 \leq c \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\leq b \) and \( c\in R_+ \)
shows \( a\cdot c \leq b\cdot c \), \( c\cdot a \leq c\cdot b \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \)
shows \( abs(a\cdot b) = abs(a)\cdot abs(b) \)assumes \( m\in \mathbb{Z} \)
shows \( m \leq abs(m) \), \( ( - m) \leq abs(m) \)assumes \( k \leq i \)
shows \( ( - i) \leq ( - k) \), \( \ \$\!-\!i \leq \ \$\!-\!k \)assumes \( 0 \leq m \)
shows \( ( - m) \leq 0 \)assumes \( \text{refl}(X,r) \) and \( a\in X \), \( b\in X \) and \( \langle a,b\rangle \in r \)
shows \( a \in \text{Interval}(r,a,b) \), \( b \in \text{Interval}(r,a,b) \)assumes \( r \text{ is total on } X \) and \( x\in X \), \( y\in X \)
shows \( \langle x, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle y, \text{GreaterOf}(r,x,y)\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),x\rangle \in r \), \( \langle \text{SmallerOf}(r,x,y),y\rangle \in r \)assumes \( a\in G \) and \( \vert a\vert \leq L \)
shows \( L^{-1}\leq a \)assumes \( r \text{ is total on } G \) and \( a\in G \) and \( \vert a\vert \leq L \)
shows \( a\leq L \), \( 1 \leq L \)assumes \( a\in G \) and \( \vert a\vert \leq L \) and \( 1 \leq c \)
shows \( (L\cdot c)^{-1} \leq a \)assumes \( r \text{ is total on } G \) and \( \forall x\in X.\ b(x)\in G \wedge \vert b(x)\vert \leq L \)
shows \( \text{IsBounded}(\{b(x).\ x\in X\},r) \)assumes \( r \text{ is total on } G \) and \( \text{IsBounded}(A,r) \)
shows \( \exists L.\ \forall a\in A.\ \vert a\vert \leq L \)assumes \( r \text{ is total on } G \) and \( X\neq 0 \) and \( \{b(x).\ x\in X\} \in Fin(G) \)
shows \( \exists L\in G.\ \forall x\in X.\ \vert b(x)\vert \leq L \)assumes \( r \text{ is total on } G \) and \( f:X\rightarrow G \) and \( A\subseteq X \) and \( \forall x\in A.\ \vert f(x)\vert \leq L \)
shows \( \text{IsBounded}(f(A),r) \)assumes \( f:X\rightarrow \mathbb{Z} \) and \( A\subseteq X \) and \( \forall x\in A.\ abs(f(x)) \leq L \)
shows \( \text{IsBounded}(f(A),IntegerOrder) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( abs(m - n) \leq abs(n) + abs(m) \), \( abs(m - n) \leq abs(m) + abs(n) \)assumes \( a\leq c \), \( b\leq c \)
shows \( a + b \leq 2 \cdot c \)assumes \( a\leq b \) and \( c\in G \) and \( b\leq c\cdot a \)
shows \( \vert b\cdot a^{-1}\vert \leq c \)assumes \( P \text{ is commutative on } G \) and \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( \vert a\cdot c^{-1}\vert \leq \vert a\cdot b\vert \cdot \vert c\cdot d\vert \cdot \vert b\cdot d^{-1}\vert \)assumes \( a\leq b \) and \( c\in \mathbb{Z} \) and \( b\leq c + a \)
shows \( abs(b - a) \leq c \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B\in Fin(X) \)
shows \( B=0 \vee \text{HasAmaximum}(r,B) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( B \in Fin(X) \)
shows \( B=0 \vee \text{HasAminimum}(r,B) \)assumes \( \text{IsLinOrder}(X,r) \) and \( A \in Fin(X) \) and \( A\neq 0 \)
shows \( \text{Maximum}(r,A) \in A \), \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( A \in Fin(\mathbb{Z} ) \) and \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,A) \in \mathbb{Z} \)assumes \( \text{IsBounded}(A,IntegerOrder) \) and \( A\neq 0 \)
shows \( \text{HasAmaximum}(IntegerOrder,A) \), \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Maximum}(IntegerOrder,A) \in A \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ x \leq \text{Maximum}(IntegerOrder,A) \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \), \( \text{Maximum}(IntegerOrder,A) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,A) \in \mathbb{Z} \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( r \subseteq X\times X \) and \( \forall A.\ \text{IsBounded}(A,r) \wedge A\neq 0 \longrightarrow \text{HasAminimum}(r,A) \) and \( B\neq 0 \) and \( \text{IsBoundedBelow}(B,r) \)
shows \( \text{HasAminimum}(r,B) \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \)
shows \( \text{Minimum}(r,A) \in A \), \( \forall x\in A.\ \langle \text{Minimum}(r,A),x\rangle \in r \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( r \subseteq X\times X \) and \( \forall A.\ \text{IsBounded}(A,r) \wedge A\neq 0 \longrightarrow \text{HasAmaximum}(r,A) \) and \( B\neq 0 \) and \( \text{IsBoundedAbove}(B,r) \)
shows \( \text{HasAmaximum}(r,B) \)assumes \( \text{antisym}(r) \) and \( \text{HasAmaximum}(r,A) \)
shows \( \text{Maximum}(r,A) \in A \), \( \forall x\in A.\ \langle x, \text{Maximum}(r,A)\rangle \in r \)assumes \( r \subseteq X\times X \) and \( \text{IsBoundedAbove}(A,r) \)
shows \( A\subseteq X \)assumes \( \forall V\in B.\ K(V)\in C \) and \( N \in \text{FinPow}(B) \)
shows \( \{K(V).\ V\in N\} \in \text{FinPow}(C) \)assumes \( \text{HasAmaximum}(r,A) \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( \text{HasAminimum}(r,A) \)
shows \( \text{IsBoundedBelow}(A,r) \)assumes \( \text{IsLinOrder}(X,r) \) and \( a\in X \), \( b\in X \), \( c\in X \)
shows \( \text{Maximum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Minimum}(r,\{a,b,c\}) \in \{a,b,c\} \), \( \text{Maximum}(r,\{a,b,c\}) \in X \), \( \text{Minimum}(r,\{a,b,c\}) \in X \), \( \langle a, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle b, \text{Maximum}(r,\{a,b,c\})\rangle \in r \), \( \langle c, \text{Maximum}(r,\{a,b,c\})\rangle \in r \)assumes \( r \subseteq X\times X \)
shows \( \text{Interval}(r,a,b) \subseteq X \)assumes \( i\in \mathbb{Z} \), \( k\in \mathbb{Z} \) and \( f:\mathbb{Z} \rightarrow \mathbb{Z} \)
shows \( f(i.\ .\ k) \in Fin(\mathbb{Z} ) \), \( \text{IsBounded}(f(i.\ .\ k),IntegerOrder) \)assumes \( a\leq b \) and \( f:G\rightarrow G \)
shows \( f( \text{Interval}(r,a,b)) \neq 0 \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( \text{IsBoundedBelow}(A,r) \) and \( B\subseteq A \)
shows \( \text{IsBoundedBelow}(B,r) \)assumes \( A \subseteq \mathbb{Z} _+ \)
shows \( \text{IsBoundedBelow}(A,IntegerOrder) \)assumes \( \text{IsBoundedBelow}(A,IntegerOrder) \) and \( A\neq 0 \)
shows \( \) \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \)assumes \( \forall a\in A.\ \langle a,u\rangle \in r \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( A \subseteq \mathbb{Z} ^+ \)
shows \( \text{IsBoundedBelow}(A,IntegerOrder) \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( \text{Exactly_1_of_3_holds} (a=1 ,a\in G_+,a^{-1}\in G_+) \)assumes \( r \text{ is total on } G \) and \( a\in G \)
shows \( a=1 \vee a\in G_+ \vee a^{-1}\in G_+ \)assumes \( a\in \mathbb{Z} _+ \), \( b\in \mathbb{Z} _+ \)
shows \( a\cdot b \in \mathbb{Z} _+ \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( a\leq b \)
shows \( maxf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ f(c) \leq maxf(f,a.\ .\ b) \), \( \exists c \in a.\ .\ b.\ f(c) = maxf(f,a.\ .\ b) \), \( minf(f,a.\ .\ b) \in \mathbb{Z} \), \( \forall c \in a.\ .\ b.\ minf(f,a.\ .\ b) \leq f(c) \), \( \exists c \in a.\ .\ b.\ f(c) = minf(f,a.\ .\ b) \)assumes \( a\in \mathbb{Z} \)
shows \( a - 1 \leq a \), \( a - 1 \neq a \), \( \neg (a\leq a - 1 ) \), \( \neg (a + 1 \leq a) \), \( \neg (1 + a \leq a) \)assumes \( a\in G_+ \)
shows \( \vert a\vert = a \)assumes \( \langle a,x\rangle \in r \), \( \langle x,b\rangle \in r \)
shows \( x \in \text{Interval}(r,a,b) \)assumes \( a\in G \), \( b\in G_+ \)
shows \( a\leq a\cdot b \), \( a \neq a\cdot b \), \( a\cdot b \in G \)assumes \( 0 \neq 1 \) and \( a\in R \)
shows \( a \leq \text{GreaterOf}(r,1 ,a) \), \( \text{GreaterOf}(r,1 ,a) \in R_+ \), \( \text{GreaterOf}(r,1 ,a) + 1 \in R_+ \), \( a \leq \text{GreaterOf}(r,1 ,a) + 1 \), \( a \neq \text{GreaterOf}(r,1 ,a) + 1 \)assumes \( r \text{ is total on } G \) and \( a \in G_+ \)
shows \( a^{-1} \notin G_+ \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( a\in G \)
shows \( \exists b\in G_+.\ a\leq b \)assumes \( r \text{ is total on } G \) and \( f: G_+\rightarrow G \)
shows \( f^\circ : G \rightarrow G \), \( \forall a\in G_+.\ (f^\circ )(a) = f(a) \), \( \forall a\in (-G_+).\ (f^\circ )(a) = (f(a^{-1}))^{-1} \), \( (f^\circ )(1 ) = 1 \)assumes \( r \text{ is total on } G \) and \( f: G_+\rightarrow G \) and \( a\in G \)
shows \( (f^\circ )(a^{-1}) = ((f^\circ )(a))^{-1} \)assumes \( p : G\rightarrow G \)
shows \( (\forall a\in G.\ p(a^{-1}) = (p(a))^{-1}) \longleftrightarrow (\forall a\in G.\ (p(a^{-1}))^{-1} = p(a)) \)assumes \( r \text{ is total on } G \) and \( f: G_+\rightarrow G \) and \( a\in G \)
shows \( ((f^\circ )(a^{-1}))^{-1} = (f^\circ )(a) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall x.\ b\leq x \longrightarrow a \leq f(x) \) and \( A\subseteq G \) and \( \text{IsBoundedAbove}(f(A),r) \)
shows \( \text{IsBoundedAbove}(A,r) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( X\neq 0 \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow a \leq f(y) \) and \( \forall x\in X.\ b(x) \in G \wedge f(b(x)) \leq U \)
shows \( \exists u.\ \forall x\in X.\ b(x) \leq u \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( X\neq 0 \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow f(y^{-1}) \leq a \) and \( \forall x\in X.\ b(x) \in G \wedge L \leq f(b(x)) \)
shows \( \exists l.\ \forall x\in X.\ l \leq b(x) \)assumes \( r \text{ is total on } G \) and \( G \neq \{1 \} \) and \( X\neq 0 \) and \( f:G\rightarrow G \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow a \leq f(y) \) and \( \forall a\in G.\ \exists b\in G_+.\ \forall y.\ b\leq y \longrightarrow f(y^{-1}) \leq a \) and \( \forall x\in X.\ b(x) \in G \wedge L \leq f(b(x)) \wedge f(b(x)) \leq U \)
shows \( \exists M.\ \forall x\in X.\ \vert b(x)\vert \leq M \)assumes \( \text{IsBoundedBelow}(A,IntegerOrder) \)
shows \( A\subseteq \mathbb{Z} \)assumes \( r \text{ is total on } X \) and \( A\subseteq X \) and \( a\in X \)
shows \( A = \{x\in A.\ \langle x,a\rangle \in r\} \cup \{x\in A.\ \langle a,x\rangle \in r\} \)assumes \( \text{IsBoundedBelow}(A,r) \)
shows \( \text{IsBounded}(\{x\in A.\ \langle x,a\rangle \in r\},r) \)assumes \( f:X\rightarrow Y \) and \( N \in Fin(X) \)
shows \( f(N) \in Fin(Y) \)assumes \( \forall a\in A.\ \langle l,a\rangle \in r \)
shows \( \text{IsBoundedBelow}(A,r) \)assumes \( r \text{ is total on } X \) and \( \text{trans}(r) \) and \( \text{IsBoundedBelow}(A,r) \), \( \text{IsBoundedBelow}(B,r) \) and \( r \subseteq X\times X \)
shows \( \text{IsBoundedBelow}(A\cup B,r) \)assumes \( f: \mathbb{Z} \rightarrow \mathbb{Z} \) and \( N\in \mathbb{Z} \) and \( \forall m.\ N\leq m \longrightarrow L \leq f(m) \) and \( \text{IsBoundedBelow}(A,IntegerOrder) \)
shows \( \text{IsBoundedBelow}(f(A),IntegerOrder) \)assumes \( f : \mathbb{Z} \rightarrow X \)
shows \( f(\mathbb{Z} _+) \neq 0 \)assumes \( X\neq \emptyset \)
shows \( \exists x.\ x\in X \)assumes \( f:\mathbb{Z} \rightarrow \mathbb{Z} \) and \( K\in \mathbb{Z} \), \( N\in \mathbb{Z} \)
shows \( \exists C\in \mathbb{Z} .\ \forall n\in \mathbb{Z} _+.\ K \leq f(n) + C \longrightarrow N\leq n \)assumes \( i\in \mathbb{Z} \), \( m\in \mathbb{Z} \) and \( i - m \leq k \)
shows \( i \leq k + m \)assumes \( A \subseteq \mathbb{Z} _+ \) and \( A \neq 0 \)
shows \( \text{HasAminimum}(IntegerOrder,A) \), \( \text{Minimum}(IntegerOrder,A) \in A \), \( \forall x\in A.\ \text{Minimum}(IntegerOrder,A) \leq x \)assumes \( \text{antisym}(r) \) and \( \text{HasAminimum}(r,A) \) and \( \forall a\in A.\ \langle L,a\rangle \in r \)
shows \( \langle L, \text{Minimum}(r,A)\rangle \in r \)assumes \( a\in \mathbb{Z} \)
shows \( a= 0 \vee (a \leq - 1 ) \vee (1 \leq a) \)assumes \( 0 \neq 1 \) and \( m \leq - 1 \)
shows \( \{m\cdot x.\ x\in R\} \notin Fin(R) \)assumes \( 0 \neq 1 \) and \( 1 \leq m \)
shows \( \{m\cdot x.\ x\in R_+\} \notin Fin(R) \), \( \{m\cdot x.\ x\in R\} \notin Fin(R) \), \( \{( - m)\cdot x.\ x\in R\} \notin Fin(R) \)assumes \( m\in \mathbb{Z} \)
shows \( ( - abs(m)) \leq abs(m) \), \( ( - abs(m)).\ .\ abs(m) \neq 0 \)assumes \( \text{IsBounded}(A,IntegerOrder) \) and \( A\neq 0 \) and \( \forall q\in \mathbb{Z} .\ F(q) \in \mathbb{Z} \) and \( K = \{F(q).\ q \in A\} \)
shows \( \text{HasAmaximum}(IntegerOrder,K) \), \( \text{HasAminimum}(IntegerOrder,K) \), \( \text{Maximum}(IntegerOrder,K) \in K \), \( \text{Minimum}(IntegerOrder,K) \in K \), \( \text{Maximum}(IntegerOrder,K) \in \mathbb{Z} \), \( \text{Minimum}(IntegerOrder,K) \in \mathbb{Z} \), \( \forall q\in A.\ F(q) \leq \text{Maximum}(IntegerOrder,K) \), \( \forall q\in A.\ \text{Minimum}(IntegerOrder,K) \leq F(q) \), \( \text{IsBounded}(K,IntegerOrder) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m \leq \text{GreaterOf}(IntegerOrder,m,n) \), \( n \leq \text{GreaterOf}(IntegerOrder,m,n) \), \( \text{SmallerOf}(IntegerOrder,m,n) \leq m \), \( \text{SmallerOf}(IntegerOrder,m,n) \leq n \)assumes \( m\in \mathbb{Z} \) and \( abs(m) \leq n \)
shows \( ( - n) \leq m \), \( m \leq n \), \( m \in ( - n).\ .\ n \), \( 0 \leq n \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \) and \( \neg (abs(m) \leq abs(n)) \)
shows \( n \leq abs(m) \), \( m\neq 0 \)assumes \( b\in \mathbb{Z} \) and \( a\leq b + c \) and \( c\leq c_1 \)
shows \( a\leq b + c_1 \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \) and \( \neg (abs(a) \leq abs(b)) \)
shows \( \neg (abs(a) \leq 0 ) \)assumes \( a\in \mathbb{Z} \), \( b\in \mathbb{Z} \), \( c\in \mathbb{Z} \) and \( a\cdot c \leq b\cdot c \) and \( \neg (c\leq 0 ) \)
shows \( a \leq b \)assumes \( r \text{ is total on } G \) and \( a\in G \), \( b\in G \)
shows \( 1 \leq a \wedge 1 \leq b \vee a\leq 1 \wedge b\leq 1 \vee \) \( a\leq 1 \wedge 1 \leq b \wedge 1 \leq a\cdot b \vee a\leq 1 \wedge 1 \leq b \wedge a\cdot b \leq 1 \vee \) \( 1 \leq a \wedge b\leq 1 \wedge 1 \leq a\cdot b \vee 1 \leq a \wedge b\leq 1 \wedge a\cdot b \leq 1 \)