In this theory we consider notions in group theory that are useful for the construction of real numbers in the Real_ZF_x series of theories.
In this section show that the group valued functions \(f : X\rightarrow G\), with the property that \(f(X)\) is a finite subset of \(G\), is a group. Such functions play an important role in the construction of real numbers in the Real_ZF series.
The following proves the essential condition to show that the set of finite range functions is closed with respect to the lifted group operation.
lemma (in group0) Group_ZF_3_1_L1:
assumes A1: \( F = P \text{ lifted to function space over } X \) and A2: \( s \in \text{FinRangeFunctions}(X,G) \), \( r \in \text{FinRangeFunctions}(X,G) \)
shows \( F\langle s,r\rangle \in \text{FinRangeFunctions}(X,G) \)proofThe set of group valued finite range functions is closed with respect to the lifted group operation.
lemma (in group0) Group_ZF_3_1_L2:
assumes A1: \( F = P \text{ lifted to function space over } X \)
shows \( \text{FinRangeFunctions}(X,G) \text{ is closed under } F \)proofA composition of a finite range function with the group inverse is a finite range function.
lemma (in group0) Group_ZF_3_1_L3:
assumes A1: \( s \in \text{FinRangeFunctions}(X,G) \)
shows \( \text{GroupInv}(G,P)\circ s \in \text{FinRangeFunctions}(X,G) \) using groupAssum, assms, group0_2_T2, Finite1_L20The set of finite range functions is a subgroup of the lifted group.
theorem Group_ZF_3_1_T1:
assumes A1: \( \text{IsAgroup}(G,P) \) and A2: \( F = P \text{ lifted to function space over } X \) and A3: \( X\neq 0 \)
shows \( \text{IsAsubgroup}( \text{FinRangeFunctions}(X,G),F) \)proofAn almost homomorphism is a group valued function defined on a monoid \(M\) with the property that the set \(\{ f(m+n)-f(m)-f(n)\}_{m,n \in M}\) is finite. This term is used by R. D. Arthan in "The Eudoxus Real Numbers". We use this term in the general group context and use the A`Campo's term "slopes" (see his "A natural construction for the real numbers") to mean an almost homomorphism mapping interegers into themselves. We consider almost homomorphisms because we use slopes to define real numbers in the Real_ZF_x series.
HomDiff is an acronym for "homomorphism difference". This is the expression \(s(mn)(s(m)s(n))^{-1}\), or \(s(m+n)-s(m)-s(n)\) in the additive notation. It is equal to the neutral element of the group if \(s\) is a homomorphism.
definition
\( \text{HomDiff}(G,f,s,x) \equiv \) \( f\langle s(f\langle \text{fst}(x),\text{snd}(x)\rangle ) , \) \( ( \text{GroupInv}(G,f)(f\langle s(\text{fst}(x)),s(\text{snd}(x))\rangle ))\rangle \)
Almost homomorphisms are defined as those maps \(s:G\rightarrow G\) such that the homomorphism difference takes only finite number of values on \(G\times G\).
definition
\( \text{AlmostHoms}(G,f) \equiv \) \( \{s \in G\rightarrow G.\ \{ \text{HomDiff}(G,f,s,x).\ x \in G\times G \} \in Fin(G)\} \)
AlHomOp1\((G,f)\) is the group operation on almost homomorphisms defined in a natural way by \((s\cdot r)(n) = s(n)\cdot r(n)\). In the terminology defined in func1.thy this is the group operation \(f\) (on \(G\)) lifted to the function space \(G\rightarrow G\) and restricted to the set AlmostHoms\((G,f)\).
definition
\( \text{AlHomOp1}(G,f) \equiv \) \( \text{restrict}(f \text{ lifted to function space over } G,\) \( \text{AlmostHoms}(G,f)\times \text{AlmostHoms}(G,f)) \)
We also define a composition (binary) operator on almost homomorphisms in a natural way. We call that operator AlHomOp2 - the second operation on almost homomorphisms. Composition of almost homomorphisms is used to define multiplication of real numbers in Real_ZF series.
definition
\( \text{AlHomOp2}(G,f) \equiv \) \( \text{restrict}( \text{Composition}(G), \text{AlmostHoms}(G,f)\times \text{AlmostHoms}(G,f)) \)
This lemma provides more readable notation for the HomDiff definition. Not really intended to be used in proofs, but just to see the definition in the notation defined in the group0 locale.
lemma (in group0) HomDiff_notation:
shows \( \text{HomDiff}(G,P,s,\langle m,n\rangle ) = s(m\cdot n)\cdot (s(m)\cdot s(n))^{-1} \) using HomDiff_defThe next lemma shows the set from the definition of almost homomorphism in a different form.
lemma (in group0) Group_ZF_3_2_L1A:
shows \( \{ \text{HomDiff}(G,P,s,x).\ x \in G\times G \} = \{s(m\cdot n)\cdot (s(m)\cdot s(n))^{-1}.\ \langle m,n\rangle \in G\times G\} \)proofLet's define some notation. We inherit the notation and assumptions from the group0 context (locale) and add some. We will use AH to denote the set of almost homomorphisms. \(\sim\) is the inverse (negative if the group is the group of integers) of almost homomorphisms, \((\sim p)(n)= p(n)^{-1}\). \(\delta \) will denote the homomorphism difference specific for the group (HomDiff\((G,f)\)). The notation \(s \approx r\) will mean that \(s,r\) are almost equal, that is they are in the equivalence relation defined by the group of finite range functions (that is a normal subgroup of almost homomorphisms, if the group is abelian). We show that this is equivalent to the set \(\{ s(n)\cdot r(n)^{-1}: n\in G\}\) being finite. We also add an assumption that the \(G\) is abelian as many needed properties do not hold without that.
locale group1 = group0 +
assumes isAbelian: \( P \text{ is commutative on } G \)
defines \( AH \equiv \text{AlmostHoms}(G,P) \)
defines \( Op1 \equiv \text{AlHomOp1}(G,P) \)
defines \( Op2 \equiv \text{AlHomOp2}(G,P) \)
defines \( FR \equiv \text{FinRangeFunctions}(G,G) \)
defines \( \sim s \equiv \text{GroupInv}(G,P)\circ s \)
defines \( \delta (s,x) \equiv \text{HomDiff}(G,P,s,x) \)
defines \( s \bullet r \equiv \text{AlHomOp1}(G,P)\langle s,r\rangle \)
defines \( s \circ r \equiv \text{AlHomOp2}(G,P)\langle s,r\rangle \)
defines \( s \cong r \equiv \langle s,r\rangle \in \text{QuotientGroupRel}(AH,Op1,FR) \)
HomDiff is a homomorphism on the lifted group structure.
lemma (in group1) Group_ZF_3_2_L1:
assumes A1: \( s:G\rightarrow G \), \( r:G\rightarrow G \) and A2: \( x \in G\times G \) and A3: \( F = P \text{ lifted to function space over } G \)
shows \( \delta (F\langle s,r\rangle ,x) = \delta (s,x)\cdot \delta (r,x) \)proofThe group operation lifted to the function space over \(G\) preserves almost homomorphisms.
lemma (in group1) Group_ZF_3_2_L2:
assumes A1: \( s \in AH \), \( r \in AH \) and A2: \( F = P \text{ lifted to function space over } G \)
shows \( F\langle s,r\rangle \in AH \)proofThe set of almost homomorphisms is closed under the lifted group operation.
lemma (in group1) Group_ZF_3_2_L3:
assumes \( F = P \text{ lifted to function space over } G \)
shows \( AH \text{ is closed under } F \) using assms, IsOpClosed_def, Group_ZF_3_2_L2The terms in the homomorphism difference for a function are in the group.
lemma (in group1) Group_ZF_3_2_L4:
assumes \( s:G\rightarrow G \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \) using assms, group_op_closed, inverse_in_group, apply_funtype, HomDiff_defIt is handy to have a version of Group_ZF_3_2_L4 specifically for almost homomorphisms.
corollary (in group1) Group_ZF_3_2_L4A:
assumes \( s \in AH \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \) using assms, AlmostHoms_def, Group_ZF_3_2_L4The terms in the homomorphism difference are in the group, a different form.
lemma (in group1) Group_ZF_3_2_L4B:
assumes A1: \( s \in AH \) and A2: \( x\in G\times G \)
shows \( \text{fst}(x)\cdot \text{snd}(x) \in G \), \( s(\text{fst}(x)\cdot \text{snd}(x)) \in G \), \( s(\text{fst}(x)) \in G \), \( s(\text{snd}(x)) \in G \), \( \delta (s,x) \in G \), \( s(\text{fst}(x))\cdot s(\text{snd}(x)) \in G \)proofWhat are the values of the inverse of an almost homomorphism?
lemma (in group1) Group_ZF_3_2_L5:
assumes \( s \in AH \) and \( n\in G \)
shows \( (\sim s)(n) = (s(n))^{-1} \) using assms, AlmostHoms_def, comp_fun_applyHomomorphism difference commutes with the inverse for almost homomorphisms.
lemma (in group1) Group_ZF_3_2_L6:
assumes A1: \( s \in AH \) and A2: \( x\in G\times G \)
shows \( \delta (\sim s,x) = (\delta (s,x))^{-1} \)proofThe inverse of an almost homomorphism maps the group into itself.
lemma (in group1) Group_ZF_3_2_L7:
assumes \( s \in AH \)
shows \( \sim s : G\rightarrow G \) using groupAssum, assms, AlmostHoms_def, group0_2_T2, comp_funThe inverse of an almost homomorphism is an almost homomorphism.
lemma (in group1) Group_ZF_3_2_L8:
assumes A1: \( F = P \text{ lifted to function space over } G \) and A2: \( s \in AH \)
shows \( \text{GroupInv}(G\rightarrow G,F)(s) \in AH \)proofThe function that assigns the neutral element everywhere is an almost homomorphism.
lemma (in group1) Group_ZF_3_2_L9:
shows \( \text{ConstantFunction}(G,1 ) \in AH \) and \( AH\neq 0 \)proofIf the group is abelian, then almost homomorphisms form a subgroup of the lifted group.
lemma Group_ZF_3_2_L10:
assumes A1: \( \text{IsAgroup}(G,P) \) and A2: \( P \text{ is commutative on } G \) and A3: \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAsubgroup}( \text{AlmostHoms}(G,P),F) \)proofIf the group is abelian, then almost homomorphisms form a group with the first operation, hence we can use theorems proven in group0 context aplied to this group.
lemma (in group1) Group_ZF_3_2_L10A:
shows \( \text{IsAgroup}(AH,Op1) \), \( group0(AH,Op1) \) using groupAssum, isAbelian, Group_ZF_3_2_L10, IsAsubgroup_def, AlHomOp1_def, group0_defThe group of almost homomorphisms is abelian
lemma Group_ZF_3_2_L11:
assumes A1: \( \text{IsAgroup}(G,f) \) and A2: \( f \text{ is commutative on } G \)
shows \( \text{IsAgroup}( \text{AlmostHoms}(G,f), \text{AlHomOp1}(G,f)) \), \( \text{AlHomOp1}(G,f) \text{ is commutative on } \text{AlmostHoms}(G,f) \)proofThe first operation on homomorphisms acts in a natural way on its operands.
lemma (in group1) Group_ZF_3_2_L12:
assumes \( s\in AH \), \( r\in AH \) and \( n\in G \)
shows \( (s\bullet r)(n) = s(n)\cdot r(n) \) using assms, AlHomOp1_def, restrict, AlmostHoms_def, Group_ZF_2_1_L3What is the group inverse in the group of almost homomorphisms?
lemma (in group1) Group_ZF_3_2_L13:
assumes A1: \( s\in AH \)
shows \( \text{GroupInv}(AH,Op1)(s) = \text{GroupInv}(G,P)\circ s \), \( \text{GroupInv}(AH,Op1)(s) \in AH \), \( \text{GroupInv}(G,P)\circ s \in AH \)proofThe group inverse in the group of almost homomorphisms acts in a natural way on its operand.
lemma (in group1) Group_ZF_3_2_L14:
assumes \( s\in AH \) and \( n\in G \)
shows \( ( \text{GroupInv}(AH,Op1)(s))(n) = (s(n))^{-1} \) using isAbelian, assms, Group_ZF_3_2_L13, AlmostHoms_def, comp_fun_applyThe next lemma states that if \(s,r\) are almost homomorphisms, then \(s\cdot r^{-1}\) is also an almost homomorphism.
lemma Group_ZF_3_2_L15:
assumes \( \text{IsAgroup}(G,f) \) and \( f \text{ is commutative on } G \) and \( AH = \text{AlmostHoms}(G,f) \), \( Op1 = \text{AlHomOp1}(G,f) \) and \( s \in AH \), \( r \in AH \)
shows \( Op1\langle s,r\rangle \in AH \), \( \text{GroupInv}(AH,Op1)(r) \in AH \), \( Op1\langle s, \text{GroupInv}(AH,Op1)(r)\rangle \in AH \) using assms, group0_def, group1_axioms.intro, group1_def, Group_ZF_3_2_L10A, group0_2_L1, group0_1_L1, inverse_in_groupA version of Group_ZF_3_2_L15 formulated in notation used in group1 context. States that the product of almost homomorphisms is an almost homomorphism and the the product of an almost homomorphism with a (pointwise) inverse of an almost homomorphism is an almost homomorphism.
corollary (in group1) Group_ZF_3_2_L16:
assumes \( s \in AH \), \( r \in AH \)
shows \( s\bullet r \in AH \), \( s\bullet (\sim r) \in AH \) using assms, isAbelian, group0_def, group1_axioms, group1_def, Group_ZF_3_2_L15, Group_ZF_3_2_L13In the Real_ZF series we define real numbers as a quotient of the group of integer almost homomorphisms by the integer finite range functions. In this section we setup the background for that in the general group context.
Finite range functions are almost homomorphisms.
lemma (in group1) Group_ZF_3_3_L1:
shows \( FR \subseteq AH \)proofFinite range functions valued in an abelian group form a normal subgroup of almost homomorphisms.
lemma Group_ZF_3_3_L2:
assumes A1: \( \text{IsAgroup}(G,f) \) and A2: \( f \text{ is commutative on } G \)
shows \( \text{IsAsubgroup}( \text{FinRangeFunctions}(G,G), \text{AlHomOp1}(G,f)) \), \( \text{IsAnormalSubgroup}( \text{AlmostHoms}(G,f), \text{AlHomOp1}(G,f),\) \( \text{FinRangeFunctions}(G,G)) \)proofThe group of almost homomorphisms divided by the subgroup of finite range functions is an abelian group.
theorem (in group1) Group_ZF_3_3_T1:
shows \( \text{IsAgroup}(AH// \text{QuotientGroupRel}(AH,Op1,FR), \text{QuotientGroupOp}(AH,Op1,FR)) \) and \( \text{QuotientGroupOp}(AH,Op1,FR) \text{ is commutative on }\) \( (AH// \text{QuotientGroupRel}(AH,Op1,FR)) \) using groupAssum, isAbelian, Group_ZF_3_3_L2, Group_ZF_3_2_L10A, Group_ZF_2_4_T1, Group_ZF_3_2_L10A, Group_ZF_3_2_L11, Group_ZF_3_3_L2, IsAnormalSubgroup_def, Group_ZF_2_4_L6It is useful to have a direct statement that the quotient group relation is an equivalence relation for the group of AH and subgroup FR.
lemma (in group1) Group_ZF_3_3_L3:
shows \( \text{QuotientGroupRel}(AH,Op1,FR) \subseteq AH \times AH \) and \( \text{equiv}(AH, \text{QuotientGroupRel}(AH,Op1,FR)) \) using groupAssum, isAbelian, QuotientGroupRel_def, Group_ZF_3_3_L2, Group_ZF_3_2_L10A, Group_ZF_2_4_L3The "almost equal" relation is symmetric.
lemma (in group1) Group_ZF_3_3_L3A:
assumes A1: \( s\cong r \)
shows \( r\cong s \)proofAlthough we have bypassed this fact when proving that group of almost homomorphisms divided by the subgroup of finite range functions is a group, it is still useful to know directly that the first group operation on AH is congruent with respect to the quotient group relation.
lemma (in group1) Group_ZF_3_3_L4:
shows \( \text{Congruent2}( \text{QuotientGroupRel}(AH,Op1,FR),Op1) \) using groupAssum, isAbelian, Group_ZF_3_2_L10A, Group_ZF_3_3_L2, Group_ZF_2_4_L5AThe class of an almost homomorphism \(s\) is the neutral element of the quotient group of almost homomorphisms iff \(s\) is a finite range function.
lemma (in group1) Group_ZF_3_3_L5:
assumes \( s \in AH \) and \( r = \text{QuotientGroupRel}(AH,Op1,FR) \) and \( \text{ TheNeutralElement}(AH//r, \text{QuotientGroupOp}(AH,Op1,FR)) = e \)
shows \( r\{s\} = e \longleftrightarrow s \in FR \) using groupAssum, isAbelian, assms, Group_ZF_3_2_L11, group0_def, Group_ZF_3_3_L2, Group_ZF_2_4_L5EThe group inverse of a class of an almost homomorphism \(f\) is the class of the inverse of \(f\).
lemma (in group1) Group_ZF_3_3_L6:
assumes A1: \( s \in AH \) and \( r = \text{QuotientGroupRel}(AH,Op1,FR) \) and \( F = \text{ProjFun2}(AH,r,Op1) \)
shows \( r\{\sim s\} = \text{GroupInv}(AH//r,F)(r\{s\}) \)proofThe goal of this section is to establish some facts about composition of almost homomorphisms that are needed for the real numbers construction in Real_ZF_x series. In particular we show that the set of almost homomorphisms is closed under composition and that composition is congruent with respect to the equivalence relation defined by the group of finite range functions (a normal subgroup of almost homomorphisms).
The next formula restates the definition of the homomorphism difference to express the value an almost homomorphism on a product.
lemma (in group1) Group_ZF_3_4_L1:
assumes \( s\in AH \) and \( m\in G \), \( n\in G \)
shows \( s(m\cdot n) = s(m)\cdot s(n)\cdot \delta (s,\langle m,n\rangle ) \) using isAbelian, assms, Group_ZF_3_2_L4A, HomDiff_def, group0_4_L5What is the value of a composition of almost homomorhisms?
lemma (in group1) Group_ZF_3_4_L2:
assumes \( s\in AH \), \( r\in AH \) and \( m\in G \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in G \) using assms, AlmostHoms_def, func_ZF_5_L3, restrict, AlHomOp2_def, apply_funtypeWhat is the homomorphism difference of a composition?
lemma (in group1) Group_ZF_3_4_L3:
assumes A1: \( s\in AH \), \( r\in AH \) and A2: \( m\in G \), \( n\in G \)
shows \( \delta (s\circ r,\langle m,n\rangle ) = \) \( \delta (s,\langle r(m),r(n)\rangle )\cdot s(\delta (r,\langle m,n\rangle ))\cdot \delta (s,\langle r(m)\cdot r(n),\delta (r,\langle m,n\rangle )\rangle ) \)proofWhat is the homomorphism difference of a composition (another form)? Here we split the homomorphism difference of a composition into a product of three factors. This will help us in proving that the range of homomorphism difference for the composition is finite, as each factor has finite range.
lemma (in group1) Group_ZF_3_4_L4:
assumes A1: \( s\in AH \), \( r\in AH \) and A2: \( x \in G\times G \) and A3: \( A = \delta (s,\langle r(\text{fst}(x)),r(\text{snd}(x))\rangle ) \), \( B = s(\delta (r,x)) \), \( C = \delta (s,\langle (r(\text{fst}(x))\cdot r(\text{snd}(x))),\delta (r,x)\rangle ) \)
shows \( \delta (s\circ r,x) = A\cdot B\cdot C \)proofThe range of the homomorphism difference of a composition of two almost homomorphisms is finite. This is the essential condition to show that a composition of almost homomorphisms is an almost homomorphism.
lemma (in group1) Group_ZF_3_4_L5:
assumes A1: \( s\in AH \), \( r\in AH \)
shows \( \{\delta ( \text{Composition}(G)\langle s,r\rangle ,x).\ x \in G\times G\} \in Fin(G) \)proofComposition of almost homomorphisms is an almost homomorphism.
theorem (in group1) Group_ZF_3_4_T1:
assumes A1: \( s\in AH \), \( r\in AH \)
shows \( \text{Composition}(G)\langle s,r\rangle \in AH \), \( s\circ r \in AH \)proofThe set of almost homomorphisms is closed under composition. The second operation on almost homomorphisms is associative.
lemma (in group1) Group_ZF_3_4_L6:
shows \( AH \text{ is closed under } \text{Composition}(G) \), \( \text{AlHomOp2}(G,P) \text{ is associative on } AH \)proofType information related to the situation of two almost homomorphisms.
lemma (in group1) Group_ZF_3_4_L7:
assumes A1: \( s\in AH \), \( r\in AH \) and A2: \( n\in G \)
shows \( s(n) \in G \), \( (r(n))^{-1} \in G \), \( s(n)\cdot (r(n))^{-1} \in G \), \( s(r(n)) \in G \)proofType information related to the situation of three almost homomorphisms.
lemma (in group1) Group_ZF_3_4_L8:
assumes A1: \( s\in AH \), \( r\in AH \), \( q\in AH \) and A2: \( n\in G \)
shows \( q(n)\in G \), \( s(r(n)) \in G \), \( r(n)\cdot (q(n))^{-1} \in G \), \( s(r(n)\cdot (q(n))^{-1}) \in G \), \( \delta (s,\langle q(n),r(n)\cdot (q(n))^{-1}\rangle ) \in G \)proofA formula useful in showing that the composition of almost homomorphisms is congruent with respect to the quotient group relation.
lemma (in group1) Group_ZF_3_4_L9:
assumes A1: \( s1 \in AH \), \( r1 \in AH \), \( s2 \in AH \), \( r2 \in AH \) and A2: \( n\in G \)
shows \( (s1\circ r1)(n)\cdot ((s2\circ r2)(n))^{-1} =\) \( s1(r2(n))\cdot (s2(r2(n)))^{-1}\cdot s1(r1(n)\cdot (r2(n))^{-1})\cdot \) \( \delta (s1,\langle r2(n),r1(n)\cdot (r2(n))^{-1}\rangle ) \)proofThe next lemma shows a formula that translates an expression in terms of the first group operation on almost homomorphisms and the group inverse in the group of almost homomorphisms to an expression using only the underlying group operations.
lemma (in group1) Group_ZF_3_4_L10:
assumes A1: \( s \in AH \), \( r \in AH \) and A2: \( n \in G \)
shows \( (s\bullet ( \text{GroupInv}(AH,Op1)(r)))(n) = s(n)\cdot (r(n))^{-1} \)proofA neccessary condition for two a. h. to be almost equal.
lemma (in group1) Group_ZF_3_4_L11:
assumes A1: \( s\cong r \)
shows \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)proofA sufficient condition for two a. h. to be almost equal.
lemma (in group1) Group_ZF_3_4_L12:
assumes A1: \( s\in AH \), \( r\in AH \) and A2: \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)
shows \( s\cong r \)proofAnother sufficient consdition for two a.h. to be almost equal. It is actually just an expansion of the definition of the quotient group relation.
lemma (in group1) Group_ZF_3_4_L12A:
assumes \( s\in AH \), \( r\in AH \) and \( s\bullet ( \text{GroupInv}(AH,Op1)(r)) \in FR \)
shows \( s\cong r \), \( r\cong s \)proofAnother necessary condition for two a.h. to be almost equal. It is actually just an expansion of the definition of the quotient group relation.
lemma (in group1) Group_ZF_3_4_L12B:
assumes \( s\cong r \)
shows \( s\bullet ( \text{GroupInv}(AH,Op1)(r)) \in FR \) using assms, QuotientGroupRel_defThe next lemma states the essential condition for the composition of a. h. to be congruent with respect to the quotient group relation for the subgroup of finite range functions.
lemma (in group1) Group_ZF_3_4_L13:
assumes A1: \( s1\cong s2 \), \( r1\cong r2 \)
shows \( (s1\circ r1) \cong (s2\circ r2) \)proofComposition of a. h. to is congruent with respect to the quotient group relation for the subgroup of finite range functions. Recall that if an operation say "\(\circ \)" on \(X\) is congruent with respect to an equivalence relation \(R\) then we can define the operation on the quotient space \(X/R\) by \([s]_R\circ [r]_R := [s\circ r]_R\) and this definition will be correct i.e. it will not depend on the choice of representants for the classes \([x]\) and \([y]\). This is why we want it here.
lemma (in group1) Group_ZF_3_4_L13A:
shows \( \text{Congruent2}( \text{QuotientGroupRel}(AH,Op1,FR),Op2) \)proofThe homomorphism difference for the identity function is equal to the neutral element of the group (denoted \(e\) in the group1 context).
lemma (in group1) Group_ZF_3_4_L14:
assumes A1: \( x \in G\times G \)
shows \( \delta (id(G),x) = 1 \)proofThe identity function (\(I(x) = x\)) on \(G\) is an almost homomorphism.
lemma (in group1) Group_ZF_3_4_L15:
shows \( id(G) \in AH \)proofAlmost homomorphisms form a monoid with composition. The identity function on the group is the neutral element there.
lemma (in group1) Group_ZF_3_4_L16:
shows \( \text{IsAmonoid}(AH,Op2) \), \( monoid0(AH,Op2) \), \( id(G) = \text{ TheNeutralElement}(AH,Op2) \)proofWe can project the monoid of almost homomorphisms with composition to the group of almost homomorphisms divided by the subgroup of finite range functions. The class of the identity function is the neutral element of the quotient (monoid).
theorem (in group1) Group_ZF_3_4_T2:
assumes A1: \( R = \text{QuotientGroupRel}(AH,Op1,FR) \)
shows \( \text{IsAmonoid}(AH//R, \text{ProjFun2}(AH,R,Op2)) \), \( R\{id(G)\} = \text{ TheNeutralElement}(AH//R, \text{ProjFun2}(AH,R,Op2)) \)proofIn this this section we consider what happens if we multiply an almost homomorphism by a group element. We show that the resulting function is also an a. h., and almost equal to the original one. This is used only for slopes (integer a.h.) in Int_ZF_2 where we need to correct a positive slopes by adding a constant, so that it is at least \(2\) on positive integers.
If \(s\) is an almost homomorphism and \(c\) is some constant from the group, then \(s\cdot c\) is an almost homomorphism.
lemma (in group1) Group_ZF_3_5_L1:
assumes A1: \( s \in AH \) and A2: \( c\in G \) and A3: \( r = \{\langle x,s(x)\cdot c\rangle .\ x\in G\} \)
shows \( \forall x\in G.\ r(x) = s(x)\cdot c \), \( r \in AH \), \( s \cong r \)proofassumes \( F = f \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \)
shows \( F\langle s,r\rangle : X\rightarrow G \)assumes \( f \in \text{FinRangeFunctions}(X,Y) \)
shows \( \{f(x).\ x\in X\} \in Fin(Y) \)assumes \( \{b(x).\ x\in A\} \in Fin(B) \), \( \{c(x).\ x\in A\} \in Fin(C) \) and \( f : B\times C\rightarrow E \)
shows \( \{f\langle b(x),c(x)\rangle .\ x\in A\} \in Fin(E) \)assumes \( F = P \text{ lifted to function space over } X \) and \( s:X\rightarrow G \), \( r:X\rightarrow G \) and \( x\in X \)
shows \( (F\langle s,r\rangle )(x) = s(x)\cdot r(x) \)assumes \( f:X\rightarrow Y \) and \( A\subseteq X \)
shows \( f(A) = \{f(x).\ x \in A\} \)assumes \( F = P \text{ lifted to function space over } X \) and \( s \in \text{FinRangeFunctions}(X,G) \), \( r \in \text{FinRangeFunctions}(X,G) \)
shows \( F\langle s,r\rangle \in \text{FinRangeFunctions}(X,G) \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f \in \text{FinRangeFunctions}(X,Y) \) and \( g : Y\rightarrow Z \)
shows \( g\circ f \in \text{FinRangeFunctions}(X,Z) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \text{IsAgroup}(X\rightarrow G,F) \)assumes \( e = \text{ TheNeutralElement}(G,f) \)
shows \( e \in G \wedge (\forall g\in G.\ e \oplus g = g \wedge g \oplus e = g) \)assumes \( c\in Y \) and \( X\neq 0 \)
shows \( \text{ConstantFunction}(X,c) \in \text{FinRangeFunctions}(X,Y) \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \text{FinRangeFunctions}(X,G) \text{ is closed under } F \)assumes \( F = P \text{ lifted to function space over } X \)
shows \( \forall s\in (X\rightarrow G).\ \text{GroupInv}(X\rightarrow G,F)(s) = \text{GroupInv}(G,P)\circ s \)assumes \( s \in \text{FinRangeFunctions}(X,G) \)
shows \( \text{GroupInv}(G,P)\circ s \in \text{FinRangeFunctions}(X,G) \)assumes \( H\neq 0 \) and \( H\subseteq G \) and \( H \text{ is closed under } P \) and \( \forall x\in H.\ x^{-1} \in H \)
shows \( \text{IsAsubgroup}(H,P) \)assumes \( \forall x\in X.\ \forall y\in Y.\ a(\langle x,y\rangle ) = b(x,y) \)
shows \( \{a(p).\ p \in X\times Y\} = \{b(x,y).\ \langle x,y\rangle \in X\times Y\} \)assumes \( a\in G \), \( b\in G \)
shows \( a\oplus b \in G \)assumes \( a\in G \) and \( b\in G \)
shows \( b^{-1}\cdot a^{-1} = (a\cdot b)^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \) and \( c\in G \), \( d\in G \), \( E\in G \), \( F\in G \)
shows \( a\cdot b\cdot ((c\cdot d)^{-1}\cdot (E\cdot F)^{-1}) = (a\cdot (E\cdot c)^{-1})\cdot (b\cdot (F\cdot d)^{-1}) \)assumes \( s:G\rightarrow G \), \( r:G\rightarrow G \) and \( x \in G\times G \) and \( F = P \text{ lifted to function space over } G \)
shows \( \delta (F\langle s,r\rangle ,x) = \delta (s,x)\cdot \delta (r,x) \)assumes \( s \in AH \), \( r \in AH \) and \( F = P \text{ lifted to function space over } G \)
shows \( F\langle s,r\rangle \in AH \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( s:G\rightarrow G \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \)assumes \( s \in AH \) and \( m\in G \), \( n\in G \)
shows \( m\cdot n \in G \), \( s(m\cdot n) \in G \), \( s(m) \in G \), \( s(n) \in G \), \( \delta (s,\langle m,n\rangle ) \in G \), \( s(m)\cdot s(n) \in G \)assumes \( s \in AH \) and \( x\in G\times G \)
shows \( \text{fst}(x)\cdot \text{snd}(x) \in G \), \( s(\text{fst}(x)\cdot \text{snd}(x)) \in G \), \( s(\text{fst}(x)) \in G \), \( s(\text{snd}(x)) \in G \), \( \delta (s,x) \in G \), \( s(\text{fst}(x))\cdot s(\text{snd}(x)) \in G \)assumes \( s \in AH \) and \( n\in G \)
shows \( (\sim s)(n) = (s(n))^{-1} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot b\cdot c = c\cdot a\cdot b \), \( a^{-1}\cdot (b^{-1}\cdot c^{-1})^{-1} = (a\cdot (b\cdot c)^{-1})^{-1} \), \( a\cdot (b\cdot c)^{-1} = a\cdot b^{-1}\cdot c^{-1} \), \( a\cdot (b\cdot c^{-1})^{-1} = a\cdot b^{-1}\cdot c \), \( a\cdot b^{-1}\cdot c^{-1} = a\cdot c^{-1}\cdot b^{-1} \)assumes \( f:X\rightarrow Y \) and \( N \in Fin(X) \)
shows \( f(N) \in Fin(Y) \)assumes \( f \in X\rightarrow Y \) and \( \forall x\in A.\ b(x) \in X \)
shows \( f(\{b(x).\ x\in A\}) = \{f(b(x)).\ x\in A\} \)assumes \( s \in AH \) and \( x\in G\times G \)
shows \( \delta (\sim s,x) = (\delta (s,x))^{-1} \)assumes \( s \in AH \)
shows \( \sim s : G\rightarrow G \)assumes \( x\in X \)
shows \( \text{ConstantFunction}(X,c)(x) = c \)assumes \( X\neq \emptyset \) and \( \forall x\in X.\ b(x) = c \)
shows \( \{b(x).\ x\in X\} = \{c\} \)assumes \( x\in X \)
shows \( \{x\} \in Fin(X) \)assumes \( c\in Y \)
shows \( \text{ConstantFunction}(X,c) : X\rightarrow Y \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( AH \text{ is closed under } F \)assumes \( F = P \text{ lifted to function space over } G \) and \( s \in AH \)
shows \( \text{GroupInv}(G\rightarrow G,F)(s) \in AH \)assumes \( \text{IsAgroup}(G,P) \) and \( P \text{ is commutative on } G \) and \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAsubgroup}( \text{AlmostHoms}(G,P),F) \)assumes \( F = f \text{ lifted to function space over } X \)
shows \( F : (X\rightarrow G)\times (X\rightarrow G)\rightarrow (X\rightarrow G) \)assumes \( F = P \text{ lifted to function space over } X \) and \( P \text{ is commutative on } G \)
shows \( F \text{ is commutative on } (X\rightarrow G) \)assumes \( f:X\times X\rightarrow Y \) and \( A\subseteq X \) and \( f \text{ is commutative on } X \)
shows \( \text{restrict}(f,A\times A) \text{ is commutative on } A \)assumes \( F = P \text{ lifted to function space over } X \) and \( \text{IsAsubgroup}(H,F) \) and \( g = \text{restrict}(F,H\times H) \) and \( s\in H \)
shows \( \text{GroupInv}(H,g)(s) = \text{GroupInv}(G,P)\circ s \)assumes \( s\in AH \)
shows \( \text{GroupInv}(AH,Op1)(s) = \text{GroupInv}(G,P)\circ s \), \( \text{GroupInv}(AH,Op1)(s) \in AH \), \( \text{GroupInv}(G,P)\circ s \in AH \)assumes \( \text{IsAgroup}(G,f) \) and \( f \text{ is commutative on } G \) and \( AH = \text{AlmostHoms}(G,f) \), \( Op1 = \text{AlHomOp1}(G,f) \) and \( s \in AH \), \( r \in AH \)
shows \( Op1\langle s,r\rangle \in AH \), \( \text{GroupInv}(AH,Op1)(r) \in AH \), \( Op1\langle s, \text{GroupInv}(AH,Op1)(r)\rangle \in AH \)assumes \( \forall x\in X.\ a(x) \in Y \) and \( \{b(y).\ y\in Y\} \in Fin(Z) \)
shows \( \{b(a(x)).\ x\in X\} \in Fin(Z) \)assumes \( \forall y\in Y.\ b(y) \in Z \) and \( \{a(x).\ x\in X\} \in Fin(Y) \)
shows \( \{b(a(x)).\ x\in X\} \in Fin(Z) \)assumes \( \text{IsAgroup}(G,P) \) and \( F = P \text{ lifted to function space over } X \) and \( X\neq 0 \)
shows \( \text{IsAsubgroup}( \text{FinRangeFunctions}(X,G),F) \)assumes \( \text{IsAgroup}(G,f) \) and \( \text{IsAsubgroup}(H_1,f) \) and \( \text{IsAsubgroup}(H_2,f) \)
shows \( \text{IsAsubgroup}(H_1\cap H_2,\text{restrict}(f,H_1\times H_1)) \)assumes \( \text{IsAgroup}(G,f) \) and \( f \text{ is commutative on } G \)
shows \( \text{IsAgroup}( \text{AlmostHoms}(G,f), \text{AlHomOp1}(G,f)) \), \( \text{AlHomOp1}(G,f) \text{ is commutative on } \text{AlmostHoms}(G,f) \)assumes \( \text{IsAgroup}(G,P) \) and \( P \text{ is commutative on } G \) and \( \text{IsAsubgroup}(H,P) \)
shows \( \text{IsAnormalSubgroup}(G,P,H) \), \( \text{QuotientGroupOp}(G,P,H) \text{ is commutative on } (G// \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{IsAgroup}(G,f) \) and \( f \text{ is commutative on } G \)
shows \( \text{IsAsubgroup}( \text{FinRangeFunctions}(G,G), \text{AlHomOp1}(G,f)) \), \( \text{IsAnormalSubgroup}( \text{AlmostHoms}(G,f), \text{AlHomOp1}(G,f),\) \( \text{FinRangeFunctions}(G,G)) \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{IsAgroup}(G// \text{QuotientGroupRel}(G,P,H), \text{QuotientGroupOp}(G,P,H)) \)assumes \( \text{IsAsubgroup}(H,P) \)
shows \( \text{equiv}(G, \text{QuotientGroupRel}(G,P,H)) \)assumes \( \text{equiv}(X,r) \) and \( \langle x,y\rangle \in r \)
shows \( \langle y,x\rangle \in r \)assumes \( \text{IsAgroup}(G,P) \) and \( \text{IsAnormalSubgroup}(G,P,H) \)
shows \( \text{Congruent2}( \text{QuotientGroupRel}(G,P,H),P) \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( \text{ TheNeutralElement}(G//r, \text{QuotientGroupOp}(G,P,H)) = e \)
shows \( r\{a\} = e \longleftrightarrow a\in H \)assumes \( \text{IsAnormalSubgroup}(G,P,H) \) and \( a\in G \) and \( r = \text{QuotientGroupRel}(G,P,H) \) and \( F = \text{QuotientGroupOp}(G,P,H) \)
shows \( r\{a^{-1}\} = \text{GroupInv}(G//r,F)(r\{a\}) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \) and \( c = a\cdot b^{-1} \)
shows \( a = b\cdot c \)assumes \( f:X\rightarrow X \) and \( g:X\rightarrow X \) and \( x\in X \)
shows \( ( \text{Composition}(X)\langle f,g\rangle )(x) = f(g(x)) \)assumes \( s\in AH \), \( r\in AH \) and \( m\in G \)
shows \( (s\circ r)(m) = s(r(m)) \), \( s(r(m)) \in G \)assumes \( s\in AH \) and \( m\in G \), \( n\in G \)
shows \( s(m\cdot n) = s(m)\cdot s(n)\cdot \delta (s,\langle m,n\rangle ) \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot b\cdot c\cdot d\cdot a^{-1} = b\cdot c\cdot d \)assumes \( s\in AH \), \( r\in AH \) and \( m\in G \), \( n\in G \)
shows \( \delta (s\circ r,\langle m,n\rangle ) = \) \( \delta (s,\langle r(m),r(n)\rangle )\cdot s(\delta (r,\langle m,n\rangle ))\cdot \delta (s,\langle r(m)\cdot r(n),\delta (r,\langle m,n\rangle )\rangle ) \)assumes \( s\in AH \), \( r\in AH \) and \( x \in G\times G \) and \( A = \delta (s,\langle r(\text{fst}(x)),r(\text{snd}(x))\rangle ) \), \( B = s(\delta (r,x)) \), \( C = \delta (s,\langle (r(\text{fst}(x))\cdot r(\text{snd}(x))),\delta (r,x)\rangle ) \)
shows \( \delta (s\circ r,x) = A\cdot B\cdot C \)assumes \( s\in AH \), \( r\in AH \)
shows \( \{\delta ( \text{Composition}(G)\langle s,r\rangle ,x).\ x \in G\times G\} \in Fin(G) \)assumes \( s\in AH \), \( r\in AH \)
shows \( \text{Composition}(G)\langle s,r\rangle \in AH \), \( s\circ r \in AH \)assumes \( f \text{ is associative on } X \) and \( A\subseteq X \) and \( A \text{ is closed under } f \)
shows \( \text{restrict}(f,A\times A) \text{ is associative on } A \)assumes \( s\in AH \), \( r\in AH \) and \( n\in G \)
shows \( s(n) \in G \), \( (r(n))^{-1} \in G \), \( s(n)\cdot (r(n))^{-1} \in G \), \( s(r(n)) \in G \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot b\cdot a^{-1} = b \), \( a^{-1}\cdot b\cdot a = b \), \( a^{-1}\cdot (b\cdot a) = b \), \( a\cdot (b\cdot a^{-1}) = b \)assumes \( a\in G \), \( b\in G \), \( c\in G \)
shows \( a\cdot (b\cdot c) = a\cdot b\cdot c \)assumes \( s\in AH \), \( r\in AH \), \( q\in AH \) and \( n\in G \)
shows \( q(n)\in G \), \( s(r(n)) \in G \), \( r(n)\cdot (q(n))^{-1} \in G \), \( s(r(n)\cdot (q(n))^{-1}) \in G \), \( \delta (s,\langle q(n),r(n)\cdot (q(n))^{-1}\rangle ) \in G \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \), \( c\in G \), \( d\in G \)
shows \( a\cdot b\cdot c\cdot d^{-1} = a\cdot d^{-1}\cdot b\cdot c \), \( a\cdot d\cdot (b\cdot d\cdot (c\cdot d))^{-1} = a\cdot (b\cdot c)^{-1}\cdot d^{-1} \), \( a\cdot (b\cdot c)\cdot d = a\cdot b\cdot d\cdot c \)assumes \( s\in AH \), \( r\in AH \) and \( n\in G \)
shows \( (s\bullet r)(n) = s(n)\cdot r(n) \)assumes \( s\in AH \) and \( n\in G \)
shows \( ( \text{GroupInv}(AH,Op1)(s))(n) = (s(n))^{-1} \)assumes \( s \in AH \), \( r \in AH \) and \( n \in G \)
shows \( (s\bullet ( \text{GroupInv}(AH,Op1)(r)))(n) = s(n)\cdot (r(n))^{-1} \)assumes \( f:X\rightarrow Y \) and \( \{f(x).\ x\in X\} \in Fin(Y) \)
shows \( f \in \text{FinRangeFunctions}(X,Y) \)assumes \( s\cong r \)
shows \( r\cong s \)assumes \( s\cong r \)
shows \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)assumes \( s1 \in AH \), \( r1 \in AH \), \( s2 \in AH \), \( r2 \in AH \) and \( n\in G \)
shows \( (s1\circ r1)(n)\cdot ((s2\circ r2)(n))^{-1} =\) \( s1(r2(n))\cdot (s2(r2(n)))^{-1}\cdot s1(r1(n)\cdot (r2(n))^{-1})\cdot \) \( \delta (s1,\langle r2(n),r1(n)\cdot (r2(n))^{-1}\rangle ) \)assumes \( s\in AH \), \( r\in AH \) and \( \{s(n)\cdot (r(n))^{-1}.\ n\in G\} \in Fin(G) \)
shows \( s\cong r \)assumes \( s1\cong s2 \), \( r1\cong r2 \)
shows \( (s1\circ r1) \cong (s2\circ r2) \)assumes \( x\in G \)
shows \( x\cdot x^{-1} = 1 \wedge x^{-1}\cdot x = 1 \)assumes \( x \in G\times G \)
shows \( \delta (id(G),x) = 1 \)assumes \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{IsAmonoid}(H,\text{restrict}(f,H\times H)) \)assumes \( \text{IsAmonoid}(G,f) \) and \( H \text{ is closed under } f \) and \( H\subseteq G \) and \( \text{ TheNeutralElement}(G,f) \in H \)
shows \( \text{ TheNeutralElement}(H,\text{restrict}(f,H\times H)) = \text{ TheNeutralElement}(G,f) \)assumes \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \)
shows \( \text{IsAmonoid}(G//r,F) \)assumes \( \text{IsAmonoid}(G,f) \) and \( \text{equiv}(G,r) \) and \( \text{Congruent2}(r,f) \) and \( F = \text{ProjFun2}(G,r,f) \) and \( e = \text{ TheNeutralElement}(G,f) \)
shows \( r\{e\} = \text{ TheNeutralElement}(G//r,F) \)assumes \( \forall x\in X.\ b(x) \in Y \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\} : X\rightarrow Y \)assumes \( f:X\rightarrow Y \), \( x\in X \) and \( f = \{\langle x,b(x)\rangle .\ x\in X\} \)
shows \( f(x) = b(x) \) and \( b(x)\in Y \)assumes \( \{b(x).\ x\in A\} \in Fin(B) \) and \( c\in C \) and \( f : B\times C\rightarrow E \)
shows \( \{f\langle b(x),c\rangle .\ x\in A\} \in Fin(E) \)assumes \( \forall x\in X.\ a(x) = b(x) \)
shows \( \{a(x).\ x\in X\} = \{b(x).\ x\in X\} \)assumes \( P \text{ is commutative on } G \) and \( a\in G \), \( b\in G \)
shows \( a\cdot (a\cdot b)^{-1} = b^{-1} \), \( a\cdot (b\cdot a^{-1}) = b \)