In this section we show that the integers, as a ring, have only one module structure on each abelian group. We will show that the module structure is unique, but we will also show which action is the one that defines that module structure.
As we show in theorem powz_maps_int_End in the IntGroup theory the mapping \(\mathbb{Z}\ni n\mapsto (G\ni x\mapsto x^n)\) maps integers to endomorphisms of the abelian group \(G\). We will show here that this mapping is the unique action of integers on that group.
When \(\mathbb{Z}\) acts on a group, that action is unique.
lemma (in int0) action_unique:
assumes \( \text{IsLeftModule}(int,IntegerAddition,IntegerMultiplication,G,f,S_1) \) and \( \text{IsLeftModule}(int,IntegerAddition,IntegerMultiplication,G,f,S_2) \)
shows \( S_1 = S_2 \)proofWe can use theorems proven in the abelian_group locale in the abgroup_int0 locale.
proof
The rest of the propositions in this section concern the mapping \(\mathbb{Z}\ni n\mapsto (G\ni x\mapsto x^n)\). To simplify the statements and proofs we will denote this mapping as \(\mathcal{S}\).
locale abgroup_int1 = abgroup_int0 +
defines \( \mathcal{S} \equiv \{\langle z,\{\langle x,x^{z}\rangle .\ x\in G\}\rangle .\ z\in \mathbb{Z} \} \)
The mapping \(\mathcal{S}\) is a group homomorphism between \((\mathbb{Z},+)\) and \((G,P)\)
lemma (in abgroup_int1) group_action_int_add_morphism:
assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \), \( g\in G \)
shows \( (\mathcal{S} (r + s))(g) = ((\mathcal{S} (r))(g))\cdot ((\mathcal{S} (s))(g)) \) using assms, int_sum_type, ZF_fun_from_tot_val1, powz_hom_propSame as in lemma group_action_int_add_morphism above, but not pointwise:
lemma (in abgroup_int1) group_action_int_add_morphism_fun:
assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \)
shows \( \mathcal{S} (r + s) = \text{EndAdd}(G,P)\langle \mathcal{S} (r),\mathcal{S} (s)\rangle \)proofThe mapping \(\mathcal{S}\) is a homomorphism between \((\mathbb{Z},\cdot)\) and \((G\to G, \circ)\)
lemma (in abgroup_int1) group_action_int_mult_morphism:
assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \)
shows \( \mathcal{S} (r\cdot _Zs) = \text{EndMult}(G,P)\langle \mathcal{S} (r),\mathcal{S} (s)\rangle \)proofThe action maps the integer \(1\) to the identity, i.e. the neutral element of the composition of endomorphisms (which is the multiplication operation of the ring of endomorphisms of the group).
lemma (in abgroup_int1) group_action_int_unit:
shows \( \mathcal{S} (1 _Z) = \text{ TheNeutralElement}( \text{End}(G,P), \text{EndMult}(G,P)) \)proofThe function from integers to endomorphisms of \(G\) defined by \(z\mapsto (x\mapsto x^z)\) is a module.
theorem (in abgroup_int1) group_action_int:
shows \( \text{IsLeftModule}(\mathbb{Z} ,IntegerAddition,IntegerMultiplication,G,P,\mathcal{S} ) \) using groupAssum, isAbelian, Int_ZF_1_1_L2, powz_maps_int_End, group_action_int_add_morphism_fun, group_action_int_mult_morphism, group_action_int_unit unfolding IsMorphism_def, ringHomomor_def, IsAction_def, IsLeftModule_defIf there is a \(\mathbb{Z}\)-module on an abelian group, it is the one found in the previous result.
theorem (in abgroup_int1) group_action_int_rev0:
assumes \( \text{IsLeftModule}(\mathbb{Z} ,IntegerAddition,IntegerMultiplication,G,P,S) \)
shows \( S=\mathcal{S} \) using assms, group_action_int, action_uniqueassumes \( g\in \mathcal{M} \)
shows \( 0 \cdot _Sg = \Theta \)assumes \( r\in R \)
shows \( H(r) \in \text{End}(\mathcal{M} ,A_M) \) and \( H(r):\mathcal{M} \rightarrow \mathcal{M} \)assumes \( f:X\rightarrow Y \)
shows \( f = \{\langle x,f(x)\rangle .\ x \in X\} \)assumes \( r\in R \)
shows \( H(r) \in \text{End}(\mathcal{M} ,A_M) \) and \( H(r):\mathcal{M} \rightarrow \mathcal{M} \)assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \)assumes \( x\in G \)
shows \( x^{-1}\in G \)assumes \( r\in R \), \( s\in R \), \( x\in \mathcal{M} \)
shows \( (r + s)\cdot _Sx = r\cdot _Sx +_V s\cdot _Sx \)assumes \( g\in \mathcal{M} \)
shows \( ( - 1 )\cdot _Sg = - g \)assumes \( x\in \mathcal{M} \)
shows \( 1 \cdot _Sx = x \)assumes \( a\in R \)
shows \( ( - a) \in R \), \( ( - ( - a)) = a \), \( a + 0 = a \), \( 0 + a = a \), \( a\cdot 1 = a \), \( 1 \cdot a = a \), \( a - a = 0 \), \( a - 0 = a \), \( 2 \cdot a = a + a \), \( ( - a) + a = 0 \)assumes \( \text{IsAgroup}(G,f) \)
shows \( \text{GroupInv}(G,f) : G\rightarrow G \)assumes \( f: X\rightarrow Y \), \( g: X\rightarrow Z \) and \( \forall x\in X.\ f(x) = g(x) \)
shows \( f = g \)assumes \( a\in G \), \( b\in G \)
shows \( a\cdot b \in G \)assumes \( k\leq i \) and \( P(i) \) and \( \forall n.\ n\leq i \wedge P(n) \longrightarrow P(n - 1 ) \)
shows \( P(k) \)assumes \( a\leq b \)
shows \( a\in G \), \( b\in G \)assumes \( i\leq k \) and \( Q(i) \) and \( \forall m.\ i\leq m \wedge Q(m) \longrightarrow Q(m + 1 ) \)
shows \( Q(k) \)assumes \( \text{IsLeftModule}(S,A,M,\mathcal{M} ,A_M,H) \)
shows \( \text{IsAction}(S,A,M,\mathcal{M} ,A_M,H) \), \( \text{ringHomomor}(H,S,A,M, \text{End}(\mathcal{M} ,A_M), \text{EndAdd}(\mathcal{M} ,A_M), \text{EndMult}(\mathcal{M} ,A_M)) \), \( H:S\rightarrow \text{End}(\mathcal{M} ,A_M) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m + n \in \mathbb{Z} \)assumes \( x\in X \)
shows \( \{\langle x,b(x)\rangle .\ x\in X\}(x)=b(x) \)assumes \( z_1\in \mathbb{Z} \), \( z_2\in \mathbb{Z} \), \( x\in G \)
shows \( x^{z_1 + z_2} = x^{z_1}\cdot x^{z_2} \)assumes \( F = P \text{ lifted to function space over } G \)
shows \( \text{IsAgroup}( \text{End}(G,P),\text{InEnd}(F,G,P)) \) and \( \text{InEnd}(F,G,P) \text{ is commutative on } \text{End}(G,P) \)assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \), \( g\in G \)
shows \( (\mathcal{S} (r + s))(g) = ((\mathcal{S} (r))(g))\cdot ((\mathcal{S} (s))(g)) \)assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \), \( x\in G \), \( F = P \text{ lifted to function space over } G \)
shows \( (\text{InEnd}(F,G,P)\langle f,g\rangle )(x) = (f(x))\cdot (g(x)) \)assumes \( m\in \mathbb{Z} \), \( n\in \mathbb{Z} \)
shows \( m\cdot n \in \mathbb{Z} \)assumes \( x\in \mathbb{Z} \), \( y\in \mathbb{Z} \)
shows \( x + y = y + x \), \( x\cdot y = y\cdot x \)assumes \( z_1\in \mathbb{Z} \), \( z_2\in \mathbb{Z} \), \( x\in G \)
shows \( x^{z_1\cdot _Zz_2} = (x^{z_1})^{z_2} \)assumes \( z\in \mathbb{Z} \), \( x\in G \)
shows \( x^{z} \in G \)assumes \( \forall x\in X.\ a(x)\in Y \), \( \forall y\in Y.\ b(y)\in Z \)
shows \( \{\langle y,b(y)\rangle .\ y\in Y\}\circ \{\langle x,a(x)\rangle .\ x\in X\} = \{\langle x,b(a(x))\rangle .\ x\in X\} \)assumes \( f\in \text{End}(G,P) \), \( g\in \text{End}(G,P) \)
shows \( \text{InEnd}( \text{Composition}(G),G,P)\langle f,g\rangle = (f\circ g) \)assumes \( x\in G \)
shows \( x^{ 0 } = 1 \) and \( x^{1 _Z} = x \)assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \)
shows \( \mathcal{S} (r + s) = \text{EndAdd}(G,P)\langle \mathcal{S} (r),\mathcal{S} (s)\rangle \)assumes \( r\in \mathbb{Z} \), \( s\in \mathbb{Z} \)
shows \( \mathcal{S} (r\cdot _Zs) = \text{EndMult}(G,P)\langle \mathcal{S} (r),\mathcal{S} (s)\rangle \)assumes \( \text{IsLeftModule}(int,IntegerAddition,IntegerMultiplication,G,f,S_1) \) and \( \text{IsLeftModule}(int,IntegerAddition,IntegerMultiplication,G,f,S_2) \)
shows \( S_1 = S_2 \)